libdc/src/suunto_vyper.c
Jef Driesen ff29d218bb Use helper functions to allocate and free objects.
Both the allocation and initialization of the object data structure is
now moved to a single function. The corresponding deallocation function
is intended to free objects that have been allocated, but are not fully
initialized yet. The public cleanup function shouldn't be used in such
case, because it may try to release resources that haven't been
initialized yet.
2016-01-05 20:40:21 +01:00

577 lines
18 KiB
C

/*
* libdivecomputer
*
* Copyright (C) 2008 Jef Driesen
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#include <string.h> // memcmp, memcpy
#include <stdlib.h> // malloc, free
#include <assert.h> // assert
#include <libdivecomputer/suunto_vyper.h>
#include "context-private.h"
#include "device-private.h"
#include "suunto_common.h"
#include "serial.h"
#include "checksum.h"
#include "array.h"
#define ISINSTANCE(device) dc_device_isinstance((device), &suunto_vyper_device_vtable)
#define EXITCODE(rc) \
( \
rc == -1 ? DC_STATUS_IO : DC_STATUS_TIMEOUT \
)
#define MIN(a,b) (((a) < (b)) ? (a) : (b))
#define MAX(a,b) (((a) > (b)) ? (a) : (b))
#define SZ_MEMORY 0x2000
#define SZ_PACKET 32
#define HDR_DEVINFO_VYPER 0x24
#define HDR_DEVINFO_SPYDER 0x16
#define HDR_DEVINFO_BEGIN (HDR_DEVINFO_SPYDER)
#define HDR_DEVINFO_END (HDR_DEVINFO_VYPER + 6)
typedef struct suunto_vyper_device_t {
suunto_common_device_t base;
serial_t *port;
} suunto_vyper_device_t;
static dc_status_t suunto_vyper_device_read (dc_device_t *abstract, unsigned int address, unsigned char data[], unsigned int size);
static dc_status_t suunto_vyper_device_write (dc_device_t *abstract, unsigned int address, const unsigned char data[], unsigned int size);
static dc_status_t suunto_vyper_device_dump (dc_device_t *abstract, dc_buffer_t *buffer);
static dc_status_t suunto_vyper_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata);
static dc_status_t suunto_vyper_device_close (dc_device_t *abstract);
static const dc_device_vtable_t suunto_vyper_device_vtable = {
sizeof(suunto_vyper_device_t),
DC_FAMILY_SUUNTO_VYPER,
suunto_common_device_set_fingerprint, /* set_fingerprint */
suunto_vyper_device_read, /* read */
suunto_vyper_device_write, /* write */
suunto_vyper_device_dump, /* dump */
suunto_vyper_device_foreach, /* foreach */
suunto_vyper_device_close /* close */
};
static const suunto_common_layout_t suunto_vyper_layout = {
0x51, /* eop */
0x71, /* rb_profile_begin */
SZ_MEMORY, /* rb_profile_end */
9, /* fp_offset */
5 /* peek */
};
static const suunto_common_layout_t suunto_spyder_layout = {
0x1C, /* eop */
0x4C, /* rb_profile_begin */
SZ_MEMORY, /* rb_profile_end */
6, /* fp_offset */
3 /* peek */
};
dc_status_t
suunto_vyper_device_open (dc_device_t **out, dc_context_t *context, const char *name)
{
dc_status_t status = DC_STATUS_SUCCESS;
suunto_vyper_device_t *device = NULL;
if (out == NULL)
return DC_STATUS_INVALIDARGS;
// Allocate memory.
device = (suunto_vyper_device_t *) dc_device_allocate (context, &suunto_vyper_device_vtable);
if (device == NULL) {
ERROR (context, "Failed to allocate memory.");
return DC_STATUS_NOMEMORY;
}
// Initialize the base class.
suunto_common_device_init (&device->base);
// Set the default values.
device->port = NULL;
// Open the device.
int rc = serial_open (&device->port, context, name);
if (rc == -1) {
ERROR (context, "Failed to open the serial port.");
status= DC_STATUS_IO;
goto error_free;
}
// Set the serial communication protocol (2400 8O1).
rc = serial_configure (device->port, 2400, 8, SERIAL_PARITY_ODD, 1, SERIAL_FLOWCONTROL_NONE);
if (rc == -1) {
ERROR (context, "Failed to set the terminal attributes.");
status = DC_STATUS_IO;
goto error_close;
}
// Set the timeout for receiving data (1000 ms).
if (serial_set_timeout (device->port, 1000) == -1) {
ERROR (context, "Failed to set the timeout.");
status = DC_STATUS_IO;
goto error_close;
}
// Set the DTR line (power supply for the interface).
if (serial_set_dtr (device->port, 1) == -1) {
ERROR (context, "Failed to set the DTR line.");
status = DC_STATUS_IO;
goto error_close;
}
// Give the interface 100 ms to settle and draw power up.
serial_sleep (device->port, 100);
// Make sure everything is in a sane state.
serial_flush (device->port, SERIAL_QUEUE_BOTH);
*out = (dc_device_t*) device;
return DC_STATUS_SUCCESS;
error_close:
serial_close (device->port);
error_free:
dc_device_deallocate ((dc_device_t *) device);
return status;
}
static dc_status_t
suunto_vyper_device_close (dc_device_t *abstract)
{
dc_status_t status = DC_STATUS_SUCCESS;
suunto_vyper_device_t *device = (suunto_vyper_device_t*) abstract;
// Close the device.
if (serial_close (device->port) == -1) {
dc_status_set_error(&status, DC_STATUS_IO);
}
return status;
}
static dc_status_t
suunto_vyper_send (suunto_vyper_device_t *device, const unsigned char command[], unsigned int csize)
{
dc_device_t *abstract = (dc_device_t *) device;
serial_sleep (device->port, 500);
// Set RTS to send the command.
serial_set_rts (device->port, 1);
// Send the command to the dive computer.
int n = serial_write (device->port, command, csize);
if (n != csize) {
ERROR (abstract->context, "Failed to send the command.");
return EXITCODE (n);
}
// If the interface sends an echo back (which is the case for many clone
// interfaces), this echo should be removed from the input queue before
// attempting to read the real reply from the dive computer. Otherwise,
// the data transfer will fail. Timing is also critical here! We have to
// wait at least until the echo appears (40ms), but not until the reply
// from the dive computer appears (600ms).
// The original suunto interface does not have this problem, because it
// does not send an echo and the RTS switching makes it impossible to
// receive the reply before RTS is cleared. We have to wait some time
// before clearing RTS (around 30ms). But if we wait too long (> 500ms),
// the reply disappears again.
serial_sleep (device->port, 200);
serial_flush (device->port, SERIAL_QUEUE_INPUT);
// Clear RTS to receive the reply.
serial_set_rts (device->port, 0);
return DC_STATUS_SUCCESS;
}
static dc_status_t
suunto_vyper_transfer (suunto_vyper_device_t *device, const unsigned char command[], unsigned int csize, unsigned char answer[], unsigned int asize, unsigned int size)
{
assert (asize >= size + 2);
dc_device_t *abstract = (dc_device_t *) device;
if (device_is_cancelled (abstract))
return DC_STATUS_CANCELLED;
// Send the command to the dive computer.
dc_status_t rc = suunto_vyper_send (device, command, csize);
if (rc != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to send the command.");
return rc;
}
// Receive the answer of the dive computer.
int n = serial_read (device->port, answer, asize);
if (n != asize) {
ERROR (abstract->context, "Failed to receive the answer.");
return EXITCODE (n);
}
// Verify the header of the package.
if (memcmp (command, answer, asize - size - 1) != 0) {
ERROR (abstract->context, "Unexpected answer start byte(s).");
return DC_STATUS_PROTOCOL;
}
// Verify the checksum of the package.
unsigned char crc = answer[asize - 1];
unsigned char ccrc = checksum_xor_uint8 (answer, asize - 1, 0x00);
if (crc != ccrc) {
ERROR (abstract->context, "Unexpected answer checksum.");
return DC_STATUS_PROTOCOL;
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
suunto_vyper_device_read (dc_device_t *abstract, unsigned int address, unsigned char data[], unsigned int size)
{
suunto_vyper_device_t *device = (suunto_vyper_device_t*) abstract;
unsigned int nbytes = 0;
while (nbytes < size) {
// Calculate the package size.
unsigned int len = MIN (size - nbytes, SZ_PACKET);
// Read the package.
unsigned char answer[SZ_PACKET + 5] = {0};
unsigned char command[5] = {0x05,
(address >> 8) & 0xFF, // high
(address ) & 0xFF, // low
len, // count
0}; // CRC
command[4] = checksum_xor_uint8 (command, 4, 0x00);
dc_status_t rc = suunto_vyper_transfer (device, command, sizeof (command), answer, len + 5, len);
if (rc != DC_STATUS_SUCCESS)
return rc;
memcpy (data, answer + 4, len);
nbytes += len;
address += len;
data += len;
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
suunto_vyper_device_write (dc_device_t *abstract, unsigned int address, const unsigned char data[], unsigned int size)
{
suunto_vyper_device_t *device = (suunto_vyper_device_t*) abstract;
unsigned int nbytes = 0;
while (nbytes < size) {
// Calculate the package size.
unsigned int len = MIN (size - nbytes, SZ_PACKET);
// Prepare to write the package.
unsigned char panswer[3] = {0};
unsigned char pcommand[3] = {0x07, 0xA5, 0xA2};
dc_status_t rc = suunto_vyper_transfer (device, pcommand, sizeof (pcommand), panswer, sizeof (panswer), 0);
if (rc != DC_STATUS_SUCCESS)
return rc;
// Write the package.
unsigned char wanswer[5] = {0};
unsigned char wcommand[SZ_PACKET + 5] = {0x06,
(address >> 8) & 0xFF, // high
(address ) & 0xFF, // low
len, // count
0}; // data + CRC
memcpy (wcommand + 4, data, len);
wcommand[len + 4] = checksum_xor_uint8 (wcommand, len + 4, 0x00);
rc = suunto_vyper_transfer (device, wcommand, len + 5, wanswer, sizeof (wanswer), 0);
if (rc != DC_STATUS_SUCCESS)
return rc;
nbytes += len;
address += len;
data += len;
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
suunto_vyper_read_dive (dc_device_t *abstract, dc_buffer_t *buffer, int init, dc_event_progress_t *progress)
{
suunto_vyper_device_t *device = (suunto_vyper_device_t*) abstract;
if (device_is_cancelled (abstract))
return DC_STATUS_CANCELLED;
// Erase the current contents of the buffer.
if (!dc_buffer_clear (buffer)) {
ERROR (abstract->context, "Insufficient buffer space available.");
return DC_STATUS_NOMEMORY;
}
// Send the command to the dive computer.
unsigned char command[3] = {init ? 0x08 : 0x09, 0xA5, 0x00};
command[2] = checksum_xor_uint8 (command, 2, 0x00);
dc_status_t rc = suunto_vyper_send (device, command, 3);
if (rc != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to send the command.");
return rc;
}
unsigned int nbytes = 0;
for (unsigned int npackages = 0;; ++npackages) {
// Receive the header of the package.
unsigned char answer[SZ_PACKET + 3] = {0};
int n = serial_read (device->port, answer, 2);
if (n != 2) {
// If no data is received because a timeout occured, we assume
// the last package was already received and the transmission
// can be finished. Unfortunately this is not 100% reliable,
// because there is always a small chance that more data will
// arrive later (especially with a short timeout). But it works
// good enough in practice.
// Only for the very first package, we can be sure there was
// an error, because the DC always sends at least one package.
if (n == 0 && npackages != 0)
break;
ERROR (abstract->context, "Failed to receive the answer.");
return EXITCODE (n);
}
// Verify the header of the package.
if (answer[0] != command[0] ||
answer[1] > SZ_PACKET) {
ERROR (abstract->context, "Unexpected answer start byte(s).");
return DC_STATUS_PROTOCOL;
}
// Receive the remaining part of the package.
unsigned char len = answer[1];
n = serial_read (device->port, answer + 2, len + 1);
if (n != len + 1) {
ERROR (abstract->context, "Failed to receive the answer.");
return EXITCODE (n);
}
// Verify the checksum of the package.
unsigned char crc = answer[len + 2];
unsigned char ccrc = checksum_xor_uint8 (answer, len + 2, 0x00);
if (crc != ccrc) {
ERROR (abstract->context, "Unexpected answer checksum.");
return DC_STATUS_PROTOCOL;
}
// The DC sends a null package (a package with length zero) when it
// has reached the end of its internal ring buffer. From this point on,
// the current dive has been overwritten with newer data. Therefore,
// we discard the current (incomplete) dive and end the transmission.
if (len == 0) {
dc_buffer_clear (buffer);
return DC_STATUS_SUCCESS;
}
// Update and emit a progress event.
if (progress) {
progress->current += len;
if (progress->current > progress->maximum)
progress->current = progress->maximum;
device_event_emit (abstract, DC_EVENT_PROGRESS, progress);
}
// Append the package to the output buffer.
// Reporting of buffer errors is delayed until the entire
// transfer is finished. This approach leaves no data behind in
// the serial receive buffer, and if this packet is part of the
// last incomplete dive, no error has to be reported at all.
dc_buffer_append (buffer, answer + 2, len);
nbytes += len;
// If a package is smaller than $SZ_PACKET bytes,
// we assume it's the last packet and the transmission can be
// finished early. However, this approach does not work if the
// last packet is exactly $SZ_PACKET bytes long!
#if 0
if (len != SZ_PACKET)
break;
#endif
}
// Check for a buffer error.
if (dc_buffer_get_size (buffer) != nbytes) {
ERROR (abstract->context, "Insufficient buffer space available.");
return DC_STATUS_NOMEMORY;
}
// The DC traverses its internal ring buffer backwards. The most recent
// dive is send first (which allows you to download only the new dives),
// but also the contents of each dive is reversed. Therefore, we reverse
// the bytes again before returning them to the application.
array_reverse_bytes (dc_buffer_get_data (buffer), dc_buffer_get_size (buffer));
return DC_STATUS_SUCCESS;
}
dc_status_t
suunto_vyper_device_read_dive (dc_device_t *abstract, dc_buffer_t *buffer, int init)
{
if (!ISINSTANCE (abstract))
return DC_STATUS_INVALIDARGS;
return suunto_vyper_read_dive (abstract, buffer, init, NULL);
}
static dc_status_t
suunto_vyper_device_dump (dc_device_t *abstract, dc_buffer_t *buffer)
{
// Erase the current contents of the buffer and
// allocate the required amount of memory.
if (!dc_buffer_clear (buffer) || !dc_buffer_resize (buffer, SZ_MEMORY)) {
ERROR (abstract->context, "Insufficient buffer space available.");
return DC_STATUS_NOMEMORY;
}
return device_dump_read (abstract, dc_buffer_get_data (buffer),
dc_buffer_get_size (buffer), SZ_PACKET);
}
static dc_status_t
suunto_vyper_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata)
{
suunto_common_device_t *device = (suunto_common_device_t*) abstract;
// Enable progress notifications.
dc_event_progress_t progress = EVENT_PROGRESS_INITIALIZER;
progress.maximum = SZ_MEMORY;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
// Read the device info. The Vyper and the Spyder store this data
// in a different location. To minimize the number of (slow) reads,
// we read a larger block of memory that always contains the data
// for both devices.
unsigned char header[HDR_DEVINFO_END - HDR_DEVINFO_BEGIN] = {0};
dc_status_t rc = suunto_vyper_device_read (abstract, HDR_DEVINFO_BEGIN, header, sizeof (header));
if (rc != DC_STATUS_SUCCESS)
return rc;
// Identify the connected device as a Vyper or a Spyder, by inspecting
// the Vyper model code. For a Spyder, this value will contain the
// sample interval (20, 30 or 60s) instead of the model code.
unsigned int hoffset = HDR_DEVINFO_VYPER - HDR_DEVINFO_BEGIN;
const suunto_common_layout_t *layout = &suunto_vyper_layout;
if (header[hoffset] == 20 || header[hoffset] == 30 || header[hoffset] == 60) {
hoffset = HDR_DEVINFO_SPYDER - HDR_DEVINFO_BEGIN;
layout = &suunto_spyder_layout;
}
// Update and emit a progress event.
progress.maximum = sizeof (header) +
(layout->rb_profile_end - layout->rb_profile_begin);
progress.current += sizeof (header);
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
// Emit a device info event.
dc_event_devinfo_t devinfo;
devinfo.model = header[hoffset + 0];
devinfo.firmware = header[hoffset + 1];
devinfo.serial = 0;
for (unsigned int i = 0; i < 4; ++i) {
devinfo.serial *= 100;
devinfo.serial += header[hoffset + 2 + i];
}
device_event_emit (abstract, DC_EVENT_DEVINFO, &devinfo);
// Allocate a memory buffer.
dc_buffer_t *buffer = dc_buffer_new (layout->rb_profile_end - layout->rb_profile_begin);
if (buffer == NULL)
return DC_STATUS_NOMEMORY;
unsigned int ndives = 0;
unsigned int remaining = layout->rb_profile_end - layout->rb_profile_begin;
while ((rc = suunto_vyper_read_dive (abstract, buffer, (ndives == 0), &progress)) == DC_STATUS_SUCCESS) {
unsigned char *data = dc_buffer_get_data (buffer);
unsigned int size = dc_buffer_get_size (buffer);
if (size > remaining) {
ERROR (abstract->context, "Unexpected number of bytes received.");
dc_buffer_free (buffer);
return DC_STATUS_DATAFORMAT;
}
if (size == 0) {
dc_buffer_free (buffer);
return DC_STATUS_SUCCESS;
}
if (memcmp (data + layout->fp_offset, device->fingerprint, sizeof (device->fingerprint)) == 0) {
dc_buffer_free (buffer);
return DC_STATUS_SUCCESS;
}
if (callback && !callback (data, size, data + layout->fp_offset, sizeof (device->fingerprint), userdata)) {
dc_buffer_free (buffer);
return DC_STATUS_SUCCESS;
}
remaining -= size;
ndives++;
}
dc_buffer_free (buffer);
return rc;
}
dc_status_t
suunto_vyper_extract_dives (dc_device_t *abstract, const unsigned char data[], unsigned int size, dc_dive_callback_t callback, void *userdata)
{
suunto_common_device_t *device = (suunto_common_device_t*) abstract;
if (abstract && !ISINSTANCE (abstract))
return DC_STATUS_INVALIDARGS;
if (size < SZ_MEMORY)
return DC_STATUS_DATAFORMAT;
const suunto_common_layout_t *layout = &suunto_vyper_layout;
if (data[HDR_DEVINFO_VYPER] == 20 || data[HDR_DEVINFO_VYPER] == 30 || data[HDR_DEVINFO_VYPER] == 60)
layout = &suunto_spyder_layout;
return suunto_common_extract_dives (device, layout, data, callback, userdata);
}