libdc/src/serial_posix.c
Linus Torvalds 70ad30bed3 Merge branch 'master' of git://git.libdivecomputer.org/libdivecomputer into Subsurface-branch
Merge with upstream.

This is Dirk's Coverity patches, just gone through Jef to avoid
unnecessary merge issues.

* git://git.libdivecomputer.org/libdivecomputer:
  Cleanup: remove confusing NULL check
  Cleanup: bail on error
  Cleanup: consistently check return value of iostream functions
  Cleanup: check return value of ioctl()
  Cleanup: remove dead code and return the correct return code
  Cleanup: avoid undefined shift operation
  Cleanup: ensure string is 0 terminated
  Cleanup: avoid memory leak
  Cleanup: avoid memory leak
  Cleanup: avoid memory leaks
  Cleanup: correctly handle upper bound of array
2018-01-04 15:34:15 -08:00

928 lines
23 KiB
C

/*
* libdivecomputer
*
* Copyright (C) 2008 Jef Driesen
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <stdlib.h> // malloc, free
#include <string.h> // strerror
#include <errno.h> // errno
#include <unistd.h> // open, close, read, write
#include <fcntl.h> // fcntl
#include <termios.h> // tcgetattr, tcsetattr, cfsetispeed, cfsetospeed, tcflush, tcsendbreak
#include <sys/ioctl.h> // ioctl
#include <sys/time.h> // gettimeofday
#include <time.h> // nanosleep
#ifdef HAVE_LINUX_SERIAL_H
#include <linux/serial.h>
#endif
#ifdef HAVE_IOKIT_SERIAL_IOSS_H
#include <IOKit/serial/ioss.h>
#endif
#include <stdio.h>
#include <sys/types.h>
#include <dirent.h>
#include <fnmatch.h>
#ifndef TIOCINQ
#define TIOCINQ FIONREAD
#endif
#ifdef ENABLE_PTY
#define NOPTY (errno != EINVAL && errno != ENOTTY)
#else
#define NOPTY 1
#endif
#include "serial.h"
#include "common-private.h"
#include "context-private.h"
#include "iostream-private.h"
static dc_status_t dc_serial_set_timeout (dc_iostream_t *iostream, int timeout);
static dc_status_t dc_serial_set_latency (dc_iostream_t *iostream, unsigned int value);
static dc_status_t dc_serial_set_halfduplex (dc_iostream_t *iostream, unsigned int value);
static dc_status_t dc_serial_set_break (dc_iostream_t *iostream, unsigned int value);
static dc_status_t dc_serial_set_dtr (dc_iostream_t *iostream, unsigned int value);
static dc_status_t dc_serial_set_rts (dc_iostream_t *iostream, unsigned int value);
static dc_status_t dc_serial_get_lines (dc_iostream_t *iostream, unsigned int *value);
static dc_status_t dc_serial_get_available (dc_iostream_t *iostream, size_t *value);
static dc_status_t dc_serial_configure (dc_iostream_t *iostream, unsigned int baudrate, unsigned int databits, dc_parity_t parity, dc_stopbits_t stopbits, dc_flowcontrol_t flowcontrol);
static dc_status_t dc_serial_read (dc_iostream_t *iostream, void *data, size_t size, size_t *actual);
static dc_status_t dc_serial_write (dc_iostream_t *iostream, const void *data, size_t size, size_t *actual);
static dc_status_t dc_serial_flush (dc_iostream_t *iostream);
static dc_status_t dc_serial_purge (dc_iostream_t *iostream, dc_direction_t direction);
static dc_status_t dc_serial_sleep (dc_iostream_t *iostream, unsigned int milliseconds);
static dc_status_t dc_serial_close (dc_iostream_t *iostream);
typedef struct dc_serial_t {
dc_iostream_t base;
/*
* The file descriptor corresponding to the serial port.
*/
int fd;
int timeout;
/*
* Serial port settings are saved into this variable immediately
* after the port is opened. These settings are restored when the
* serial port is closed.
*/
struct termios tty;
/* Half-duplex settings */
int halfduplex;
unsigned int baudrate;
unsigned int nbits;
} dc_serial_t;
static const dc_iostream_vtable_t dc_serial_vtable = {
sizeof(dc_serial_t),
dc_serial_set_timeout, /* set_timeout */
dc_serial_set_latency, /* set_latency */
dc_serial_set_halfduplex, /* set_halfduplex */
dc_serial_set_break, /* set_break */
dc_serial_set_dtr, /* set_dtr */
dc_serial_set_rts, /* set_rts */
dc_serial_get_lines, /* get_lines */
dc_serial_get_available, /* get_received */
dc_serial_configure, /* configure */
dc_serial_read, /* read */
dc_serial_write, /* write */
dc_serial_flush, /* flush */
dc_serial_purge, /* purge */
dc_serial_sleep, /* sleep */
dc_serial_close, /* close */
};
static dc_status_t
syserror(int errcode)
{
switch (errcode) {
case EINVAL:
return DC_STATUS_INVALIDARGS;
case ENOMEM:
return DC_STATUS_NOMEMORY;
case ENOENT:
return DC_STATUS_NODEVICE;
case EACCES:
case EBUSY:
return DC_STATUS_NOACCESS;
default:
return DC_STATUS_IO;
}
}
dc_status_t
dc_serial_enumerate (dc_serial_callback_t callback, void *userdata)
{
DIR *dp = NULL;
struct dirent *ep = NULL;
const char *dirname = "/dev";
const char *patterns[] = {
#if defined (__APPLE__)
"tty.*",
#else
"ttyS*",
"ttyUSB*",
"ttyACM*",
"rfcomm*",
#endif
NULL
};
dp = opendir (dirname);
if (dp == NULL) {
return DC_STATUS_IO;
}
while ((ep = readdir (dp)) != NULL) {
for (size_t i = 0; patterns[i] != NULL; ++i) {
if (fnmatch (patterns[i], ep->d_name, 0) == 0) {
char filename[1024];
int n = snprintf (filename, sizeof (filename), "%s/%s", dirname, ep->d_name);
if (n >= sizeof (filename)) {
closedir (dp);
return DC_STATUS_NOMEMORY;
}
callback (filename, userdata);
break;
}
}
}
closedir (dp);
return DC_STATUS_SUCCESS;
}
dc_status_t
dc_serial_open (dc_iostream_t **out, dc_context_t *context, const char *name)
{
dc_status_t status = DC_STATUS_SUCCESS;
dc_serial_t *device = NULL;
if (out == NULL || name == NULL)
return DC_STATUS_INVALIDARGS;
// Are we using custom IO?
if (_dc_context_custom_io(context))
return dc_custom_io_serial_open(out, context, name);
INFO (context, "Open: name=%s", name);
// Allocate memory.
device = (dc_serial_t *) dc_iostream_allocate (context, &dc_serial_vtable);
if (device == NULL) {
SYSERROR (context, ENOMEM);
return DC_STATUS_NOMEMORY;
}
// Default to blocking reads.
device->timeout = -1;
// Default to full-duplex.
device->halfduplex = 0;
device->baudrate = 0;
device->nbits = 0;
// Open the device in non-blocking mode, to return immediately
// without waiting for the modem connection to complete.
device->fd = open (name, O_RDWR | O_NOCTTY | O_NONBLOCK);
if (device->fd == -1) {
int errcode = errno;
SYSERROR (context, errcode);
status = syserror (errcode);
goto error_free;
}
#ifndef ENABLE_PTY
// Enable exclusive access mode.
if (ioctl (device->fd, TIOCEXCL, NULL) != 0) {
int errcode = errno;
SYSERROR (context, errcode);
status = syserror (errcode);
goto error_close;
}
#endif
// Retrieve the current terminal attributes, to
// be able to restore them when closing the device.
// It is also used to check if the obtained
// file descriptor represents a terminal device.
if (tcgetattr (device->fd, &device->tty) != 0) {
int errcode = errno;
SYSERROR (context, errcode);
status = syserror (errcode);
goto error_close;
}
*out = (dc_iostream_t *) device;
return DC_STATUS_SUCCESS;
error_close:
close (device->fd);
error_free:
dc_iostream_deallocate ((dc_iostream_t *) device);
return status;
}
static dc_status_t
dc_serial_close (dc_iostream_t *abstract)
{
dc_status_t status = DC_STATUS_SUCCESS;
dc_serial_t *device = (dc_serial_t *) abstract;
// Restore the initial terminal attributes.
if (tcsetattr (device->fd, TCSANOW, &device->tty) != 0) {
int errcode = errno;
SYSERROR (abstract->context, errcode);
dc_status_set_error(&status, syserror (errcode));
}
#ifndef ENABLE_PTY
// Disable exclusive access mode.
if (ioctl (device->fd, TIOCNXCL, NULL)) {
int errcode = errno;
SYSERROR (abstract->context, errcode);
dc_status_set_error(&status, syserror (errcode));
}
#endif
// Close the device.
if (close (device->fd) != 0) {
int errcode = errno;
SYSERROR (abstract->context, errcode);
dc_status_set_error(&status, syserror (errcode));
}
return status;
}
static dc_status_t
dc_serial_configure (dc_iostream_t *abstract, unsigned int baudrate, unsigned int databits, dc_parity_t parity, dc_stopbits_t stopbits, dc_flowcontrol_t flowcontrol)
{
dc_serial_t *device = (dc_serial_t *) abstract;
// Retrieve the current settings.
struct termios tty;
memset (&tty, 0, sizeof (tty));
if (tcgetattr (device->fd, &tty) != 0) {
int errcode = errno;
SYSERROR (abstract->context, errcode);
return syserror (errcode);
}
// Setup raw input/output mode without echo.
tty.c_iflag &= ~(IGNBRK | BRKINT | ISTRIP | INLCR | IGNCR | ICRNL);
tty.c_oflag &= ~(OPOST);
tty.c_lflag &= ~(ICANON | ECHO | ISIG | IEXTEN);
// Enable the receiver (CREAD) and ignore modem control lines (CLOCAL).
tty.c_cflag |= (CLOCAL | CREAD);
// VMIN is the minimum number of characters for non-canonical read
// and VTIME is the timeout in deciseconds for non-canonical read.
// Setting both of these parameters to zero implies that a read
// will return immediately, only giving the currently available
// characters (non-blocking read behaviour). However, a non-blocking
// read (or write) can also be achieved by using O_NONBLOCK.
// But together with VMIN = 1, it becomes possible to recognize
// the difference between a timeout and modem disconnect (EOF)
// when read() returns zero.
tty.c_cc[VMIN] = 1;
tty.c_cc[VTIME] = 0;
// Set the baud rate.
int custom = 0;
speed_t baud = 0;
switch (baudrate) {
case 0: baud = B0; break;
case 50: baud = B50; break;
case 75: baud = B75; break;
case 110: baud = B110; break;
case 134: baud = B134; break;
case 150: baud = B150; break;
case 200: baud = B200; break;
case 300: baud = B300; break;
case 600: baud = B600; break;
case 1200: baud = B1200; break;
case 1800: baud = B1800; break;
case 2400: baud = B2400; break;
case 4800: baud = B4800; break;
case 9600: baud = B9600; break;
case 19200: baud = B19200; break;
case 38400: baud = B38400; break;
#ifdef B57600
case 57600: baud = B57600; break;
#endif
#ifdef B115200
case 115200: baud = B115200; break;
#endif
#ifdef B230400
case 230400: baud = B230400; break;
#endif
#ifdef B460800
case 460800: baud = B460800; break;
#endif
#ifdef B500000
case 500000: baud = B500000; break;
#endif
#ifdef B576000
case 576000: baud = B576000; break;
#endif
#ifdef B921600
case 921600: baud = B921600; break;
#endif
#ifdef B1000000
case 1000000: baud = B1000000; break;
#endif
#ifdef B1152000
case 1152000: baud = B1152000; break;
#endif
#ifdef B1500000
case 1500000: baud = B1500000; break;
#endif
#ifdef B2000000
case 2000000: baud = B2000000; break;
#endif
#ifdef B2500000
case 2500000: baud = B2500000; break;
#endif
#ifdef B3000000
case 3000000: baud = B3000000; break;
#endif
#ifdef B3500000
case 3500000: baud = B3500000; break;
#endif
#ifdef B4000000
case 4000000: baud = B4000000; break;
#endif
default:
baud = B38400; /* Required for custom baudrates on linux. */
custom = 1;
break;
}
if (cfsetispeed (&tty, baud) != 0 ||
cfsetospeed (&tty, baud) != 0) {
int errcode = errno;
SYSERROR (abstract->context, errcode);
return syserror (errcode);
}
// Set the character size.
tty.c_cflag &= ~CSIZE;
switch (databits) {
case 5:
tty.c_cflag |= CS5;
break;
case 6:
tty.c_cflag |= CS6;
break;
case 7:
tty.c_cflag |= CS7;
break;
case 8:
tty.c_cflag |= CS8;
break;
default:
return DC_STATUS_INVALIDARGS;
}
// Set the parity type.
#ifdef CMSPAR
tty.c_cflag &= ~(PARENB | PARODD | CMSPAR);
#else
tty.c_cflag &= ~(PARENB | PARODD);
#endif
tty.c_iflag &= ~(IGNPAR | PARMRK | INPCK);
switch (parity) {
case DC_PARITY_NONE:
tty.c_iflag |= IGNPAR;
break;
case DC_PARITY_EVEN:
tty.c_cflag |= PARENB;
tty.c_iflag |= INPCK;
break;
case DC_PARITY_ODD:
tty.c_cflag |= (PARENB | PARODD);
tty.c_iflag |= INPCK;
break;
#ifdef CMSPAR
case DC_PARITY_MARK:
tty.c_cflag |= (PARENB | PARODD | CMSPAR);
tty.c_iflag |= INPCK;
break;
case DC_PARITY_SPACE:
tty.c_cflag |= (PARENB | CMSPAR);
tty.c_iflag |= INPCK;
break;
#endif
default:
return DC_STATUS_INVALIDARGS;
}
// Set the number of stop bits.
switch (stopbits) {
case DC_STOPBITS_ONE:
tty.c_cflag &= ~CSTOPB;
break;
case DC_STOPBITS_TWO:
tty.c_cflag |= CSTOPB;
break;
default:
return DC_STATUS_INVALIDARGS;
}
// Set the flow control.
switch (flowcontrol) {
case DC_FLOWCONTROL_NONE:
#ifdef CRTSCTS
tty.c_cflag &= ~CRTSCTS;
#endif
tty.c_iflag &= ~(IXON | IXOFF | IXANY);
break;
case DC_FLOWCONTROL_HARDWARE:
#ifdef CRTSCTS
tty.c_cflag |= CRTSCTS;
tty.c_iflag &= ~(IXON | IXOFF | IXANY);
break;
#else
return DC_STATUS_UNSUPPORTED;
#endif
case DC_FLOWCONTROL_SOFTWARE:
#ifdef CRTSCTS
tty.c_cflag &= ~CRTSCTS;
#endif
tty.c_iflag |= (IXON | IXOFF);
break;
default:
return DC_STATUS_INVALIDARGS;
}
// Apply the new settings.
if (tcsetattr (device->fd, TCSANOW, &tty) != 0 && NOPTY) {
int errcode = errno;
SYSERROR (abstract->context, errcode);
return syserror (errcode);
}
// Configure a custom baudrate if necessary.
if (custom) {
#if defined(TIOCGSERIAL) && defined(TIOCSSERIAL) && !defined(__ANDROID__)
// Get the current settings.
struct serial_struct ss;
if (ioctl (device->fd, TIOCGSERIAL, &ss) != 0 && NOPTY) {
int errcode = errno;
SYSERROR (abstract->context, errcode);
return syserror (errcode);
}
// Set the custom divisor.
ss.custom_divisor = ss.baud_base / baudrate;
ss.flags &= ~ASYNC_SPD_MASK;
ss.flags |= ASYNC_SPD_CUST;
// Apply the new settings.
if (ioctl (device->fd, TIOCSSERIAL, &ss) != 0 && NOPTY) {
int errcode = errno;
SYSERROR (abstract->context, errcode);
return syserror (errcode);
}
#elif defined(IOSSIOSPEED)
speed_t speed = baudrate;
if (ioctl (device->fd, IOSSIOSPEED, &speed) != 0 && NOPTY) {
int errcode = errno;
SYSERROR (abstract->context, errcode);
return syserror (errcode);
}
#else
// Custom baudrates are not supported.
return DC_STATUS_UNSUPPORTED;
#endif
}
device->baudrate = baudrate;
device->nbits = 1 + databits + stopbits + (parity ? 1 : 0);
return DC_STATUS_SUCCESS;
}
static dc_status_t
dc_serial_set_timeout (dc_iostream_t *abstract, int timeout)
{
dc_serial_t *device = (dc_serial_t *) abstract;
device->timeout = timeout;
return DC_STATUS_SUCCESS;
}
static dc_status_t
dc_serial_set_halfduplex (dc_iostream_t *abstract, unsigned int value)
{
dc_serial_t *device = (dc_serial_t *) abstract;
device->halfduplex = value;
return DC_STATUS_SUCCESS;
}
static dc_status_t
dc_serial_set_latency (dc_iostream_t *abstract, unsigned int milliseconds)
{
dc_serial_t *device = (dc_serial_t *) abstract;
#if defined(TIOCGSERIAL) && defined(TIOCSSERIAL) && !defined(__ANDROID__)
// Get the current settings.
struct serial_struct ss;
if (ioctl (device->fd, TIOCGSERIAL, &ss) != 0 && NOPTY) {
int errcode = errno;
SYSERROR (abstract->context, errcode);
return syserror (errcode);
}
// Set or clear the low latency flag.
if (milliseconds == 0) {
ss.flags |= ASYNC_LOW_LATENCY;
} else {
ss.flags &= ~ASYNC_LOW_LATENCY;
}
// Apply the new settings.
if (ioctl (device->fd, TIOCSSERIAL, &ss) != 0 && NOPTY) {
int errcode = errno;
SYSERROR (abstract->context, errcode);
return syserror (errcode);
}
#elif defined(IOSSDATALAT)
// Set the receive latency in microseconds. Serial drivers use this
// value to determine how often to dequeue characters received by
// the hardware. A value of zero restores the default value.
unsigned long usec = (milliseconds == 0 ? 1 : milliseconds * 1000);
if (ioctl (device->fd, IOSSDATALAT, &usec) != 0 && NOPTY) {
int errcode = errno;
SYSERROR (abstract->context, errcode);
return syserror (errcode);
}
#endif
return DC_STATUS_SUCCESS;
}
static dc_status_t
dc_serial_read (dc_iostream_t *abstract, void *data, size_t size, size_t *actual)
{
dc_status_t status = DC_STATUS_SUCCESS;
dc_serial_t *device = (dc_serial_t *) abstract;
size_t nbytes = 0;
// The total timeout.
int timeout = device->timeout;
// The absolute target time.
struct timeval tve;
int init = 1;
while (nbytes < size) {
fd_set fds;
FD_ZERO (&fds);
FD_SET (device->fd, &fds);
struct timeval tvt;
if (timeout > 0) {
struct timeval now;
if (gettimeofday (&now, NULL) != 0) {
int errcode = errno;
SYSERROR (abstract->context, errcode);
status = syserror (errcode);
goto out;
}
if (init) {
// Calculate the initial timeout.
tvt.tv_sec = (timeout / 1000);
tvt.tv_usec = (timeout % 1000) * 1000;
// Calculate the target time.
timeradd (&now, &tvt, &tve);
} else {
// Calculate the remaining timeout.
if (timercmp (&now, &tve, <))
timersub (&tve, &now, &tvt);
else
timerclear (&tvt);
}
init = 0;
} else if (timeout == 0) {
timerclear (&tvt);
}
int rc = select (device->fd + 1, &fds, NULL, NULL, timeout >= 0 ? &tvt : NULL);
if (rc < 0) {
int errcode = errno;
if (errcode == EINTR)
continue; // Retry.
SYSERROR (abstract->context, errcode);
status = syserror (errcode);
goto out;
} else if (rc == 0) {
break; // Timeout.
}
ssize_t n = read (device->fd, (char *) data + nbytes, size - nbytes);
if (n < 0) {
int errcode = errno;
if (errcode == EINTR || errcode == EAGAIN)
continue; // Retry.
SYSERROR (abstract->context, errcode);
status = syserror (errcode);
goto out;
} else if (n == 0) {
break; // EOF.
}
nbytes += n;
}
if (nbytes != size) {
status = DC_STATUS_TIMEOUT;
}
out:
if (actual)
*actual = nbytes;
return status;
}
static dc_status_t
dc_serial_write (dc_iostream_t *abstract, const void *data, size_t size, size_t *actual)
{
dc_status_t status = DC_STATUS_SUCCESS;
dc_serial_t *device = (dc_serial_t *) abstract;
size_t nbytes = 0;
struct timeval tve, tvb;
if (device->halfduplex) {
// Get the current time.
if (gettimeofday (&tvb, NULL) != 0) {
int errcode = errno;
SYSERROR (abstract->context, errcode);
status = syserror (errcode);
goto out;
}
}
while (nbytes < size) {
fd_set fds;
FD_ZERO (&fds);
FD_SET (device->fd, &fds);
int rc = select (device->fd + 1, NULL, &fds, NULL, NULL);
if (rc < 0) {
int errcode = errno;
if (errcode == EINTR)
continue; // Retry.
SYSERROR (abstract->context, errcode);
status = syserror (errcode);
goto out;
} else if (rc == 0) {
break; // Timeout.
}
ssize_t n = write (device->fd, (const char *) data + nbytes, size - nbytes);
if (n < 0) {
int errcode = errno;
if (errcode == EINTR || errcode == EAGAIN)
continue; // Retry.
SYSERROR (abstract->context, errcode);
status = syserror (errcode);
goto out;
} else if (n == 0) {
break; // EOF.
}
nbytes += n;
}
// Wait until all data has been transmitted.
#ifdef __ANDROID__
/* Android is missing tcdrain, so use ioctl version instead */
while (ioctl (device->fd, TCSBRK, 1) != 0) {
#else
while (tcdrain (device->fd) != 0) {
#endif
int errcode = errno;
if (errcode != EINTR ) {
SYSERROR (abstract->context, errcode);
status = syserror (errcode);
goto out;
}
}
if (device->halfduplex) {
// Get the current time.
if (gettimeofday (&tve, NULL) != 0) {
int errcode = errno;
SYSERROR (abstract->context, errcode);
status = syserror (errcode);
goto out;
}
// Calculate the elapsed time (microseconds).
struct timeval tvt;
timersub (&tve, &tvb, &tvt);
unsigned long elapsed = tvt.tv_sec * 1000000 + tvt.tv_usec;
// Calculate the expected duration (microseconds). A 2 millisecond fudge
// factor is added because it improves the success rate significantly.
unsigned long expected = 1000000.0 * device->nbits / device->baudrate * size + 0.5 + 2000;
// Wait for the remaining time.
if (elapsed < expected) {
unsigned long remaining = expected - elapsed;
// The remaining time is rounded up to the nearest millisecond to
// match the Windows implementation. The higher resolution is
// pointless anyway, since we already added a fudge factor above.
dc_serial_sleep (abstract, (remaining + 999) / 1000);
}
}
out:
if (actual)
*actual = nbytes;
return status;
}
static dc_status_t
dc_serial_purge (dc_iostream_t *abstract, dc_direction_t direction)
{
dc_serial_t *device = (dc_serial_t *) abstract;
int flags = 0;
switch (direction) {
case DC_DIRECTION_INPUT:
flags = TCIFLUSH;
break;
case DC_DIRECTION_OUTPUT:
flags = TCOFLUSH;
break;
case DC_DIRECTION_ALL:
flags = TCIOFLUSH;
break;
default:
return DC_STATUS_INVALIDARGS;
}
if (tcflush (device->fd, flags) != 0) {
int errcode = errno;
SYSERROR (abstract->context, errcode);
return syserror (errcode);
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
dc_serial_flush (dc_iostream_t *abstract)
{
return DC_STATUS_SUCCESS;
}
static dc_status_t
dc_serial_set_break (dc_iostream_t *abstract, unsigned int level)
{
dc_serial_t *device = (dc_serial_t *) abstract;
unsigned long action = (level ? TIOCSBRK : TIOCCBRK);
if (ioctl (device->fd, action, NULL) != 0 && NOPTY) {
int errcode = errno;
SYSERROR (abstract->context, errcode);
return syserror (errcode);
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
dc_serial_set_dtr (dc_iostream_t *abstract, unsigned int level)
{
dc_serial_t *device = (dc_serial_t *) abstract;
unsigned long action = (level ? TIOCMBIS : TIOCMBIC);
int value = TIOCM_DTR;
if (ioctl (device->fd, action, &value) != 0 && NOPTY) {
int errcode = errno;
SYSERROR (abstract->context, errcode);
return syserror (errcode);
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
dc_serial_set_rts (dc_iostream_t *abstract, unsigned int level)
{
dc_serial_t *device = (dc_serial_t *) abstract;
unsigned long action = (level ? TIOCMBIS : TIOCMBIC);
int value = TIOCM_RTS;
if (ioctl (device->fd, action, &value) != 0 && NOPTY) {
int errcode = errno;
SYSERROR (abstract->context, errcode);
return syserror (errcode);
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
dc_serial_get_available (dc_iostream_t *abstract, size_t *value)
{
dc_serial_t *device = (dc_serial_t *) abstract;
int bytes = 0;
if (ioctl (device->fd, TIOCINQ, &bytes) != 0) {
int errcode = errno;
SYSERROR (abstract->context, errcode);
return syserror (errcode);
}
if (value)
*value = bytes;
return DC_STATUS_SUCCESS;
}
static dc_status_t
dc_serial_get_lines (dc_iostream_t *abstract, unsigned int *value)
{
dc_serial_t *device = (dc_serial_t *) abstract;
unsigned int lines = 0;
int status = 0;
if (ioctl (device->fd, TIOCMGET, &status) != 0) {
int errcode = errno;
SYSERROR (abstract->context, errcode);
return syserror (errcode);
}
if (status & TIOCM_CAR)
lines |= DC_LINE_DCD;
if (status & TIOCM_CTS)
lines |= DC_LINE_CTS;
if (status & TIOCM_DSR)
lines |= DC_LINE_DSR;
if (status & TIOCM_RNG)
lines |= DC_LINE_RNG;
if (value)
*value = lines;
return DC_STATUS_SUCCESS;
}
static dc_status_t
dc_serial_sleep (dc_iostream_t *abstract, unsigned int timeout)
{
struct timespec ts;
ts.tv_sec = (timeout / 1000);
ts.tv_nsec = (timeout % 1000) * 1000000;
while (nanosleep (&ts, &ts) != 0) {
int errcode = errno;
if (errcode != EINTR ) {
SYSERROR (abstract->context, errcode);
return syserror (errcode);
}
}
return DC_STATUS_SUCCESS;
}