libdc/src/oceanic_vtpro.c
Dirk Hohndel 2f097e54fe Cleanup: consistently check return value of iostream functions
Coverity CID 215197
Coverity CID 215200

Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2018-01-04 19:46:54 +01:00

673 lines
20 KiB
C

/*
* libdivecomputer
*
* Copyright (C) 2008 Jef Driesen
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#include <string.h> // memcpy
#include <stdlib.h> // malloc, free
#include <assert.h>
#include "oceanic_vtpro.h"
#include "oceanic_common.h"
#include "context-private.h"
#include "device-private.h"
#include "serial.h"
#include "ringbuffer.h"
#include "checksum.h"
#include "array.h"
#define ISINSTANCE(device) dc_device_isinstance((device), &oceanic_vtpro_device_vtable.base)
#define MAXRETRIES 2
#define MULTIPAGE 4
#define ACK 0x5A
#define NAK 0xA5
#define END 0x51
#define AERIS500AI 0x4151
typedef enum oceanic_vtpro_protocol_t {
MOD,
INTR,
} oceanic_vtpro_protocol_t;
typedef struct oceanic_vtpro_device_t {
oceanic_common_device_t base;
dc_iostream_t *iostream;
unsigned int model;
oceanic_vtpro_protocol_t protocol;
} oceanic_vtpro_device_t;
static dc_status_t oceanic_vtpro_device_logbook (dc_device_t *abstract, dc_event_progress_t *progress, dc_buffer_t *logbook);
static dc_status_t oceanic_vtpro_device_read (dc_device_t *abstract, unsigned int address, unsigned char data[], unsigned int size);
static dc_status_t oceanic_vtpro_device_close (dc_device_t *abstract);
static const oceanic_common_device_vtable_t oceanic_vtpro_device_vtable = {
{
sizeof(oceanic_vtpro_device_t),
DC_FAMILY_OCEANIC_VTPRO,
oceanic_common_device_set_fingerprint, /* set_fingerprint */
oceanic_vtpro_device_read, /* read */
NULL, /* write */
oceanic_common_device_dump, /* dump */
oceanic_common_device_foreach, /* foreach */
NULL, /* timesync */
oceanic_vtpro_device_close /* close */
},
oceanic_vtpro_device_logbook,
oceanic_common_device_profile,
};
static const oceanic_common_version_t oceanic_vtpro_version[] = {
{"VERSAPRO \0\0 256K"},
{"ATMOSTWO \0\0 256K"},
{"PROPLUS2 \0\0 256K"},
{"ATMOSAIR \0\0 256K"},
{"VTPRO r\0\0 256K"},
{"ELITE r\0\0 256K"},
};
static const oceanic_common_version_t oceanic_wisdom_version[] = {
{"WISDOM r\0\0 256K"},
};
static const oceanic_common_layout_t oceanic_vtpro_layout = {
0x8000, /* memsize */
0x0000, /* cf_devinfo */
0x0040, /* cf_pointers */
0x0240, /* rb_logbook_begin */
0x0440, /* rb_logbook_end */
8, /* rb_logbook_entry_size */
0x0440, /* rb_profile_begin */
0x8000, /* rb_profile_end */
0, /* pt_mode_global */
0, /* pt_mode_logbook */
0, /* pt_mode_serial */
};
static const oceanic_common_layout_t oceanic_wisdom_layout = {
0x8000, /* memsize */
0x0000, /* cf_devinfo */
0x0040, /* cf_pointers */
0x03D0, /* rb_logbook_begin */
0x05D0, /* rb_logbook_end */
8, /* rb_logbook_entry_size */
0x05D0, /* rb_profile_begin */
0x8000, /* rb_profile_end */
0, /* pt_mode_global */
0, /* pt_mode_logbook */
0, /* pt_mode_serial */
};
static const oceanic_common_layout_t aeris_500ai_layout = {
0x20000, /* memsize */
0x0000, /* cf_devinfo */
0x0110, /* cf_pointers */
0x0200, /* rb_logbook_begin */
0x0200, /* rb_logbook_end */
8, /* rb_logbook_entry_size */
0x00200, /* rb_profile_begin */
0x20000, /* rb_profile_end */
0, /* pt_mode_global */
1, /* pt_mode_logbook */
2, /* pt_mode_serial */
};
static dc_status_t
oceanic_vtpro_send (oceanic_vtpro_device_t *device, const unsigned char command[], unsigned int csize)
{
dc_status_t status = DC_STATUS_SUCCESS;
dc_device_t *abstract = (dc_device_t *) device;
if (device_is_cancelled (abstract))
return DC_STATUS_CANCELLED;
// Send the command to the dive computer.
status = dc_iostream_write (device->iostream, command, csize, NULL);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to send the command.");
return status;
}
// Receive the response (ACK/NAK) of the dive computer.
unsigned char response = NAK;
status = dc_iostream_read (device->iostream, &response, 1, NULL);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to receive the answer.");
return status;
}
// Verify the response of the dive computer.
if (response != ACK) {
ERROR (abstract->context, "Unexpected answer start byte(s).");
return DC_STATUS_PROTOCOL;
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
oceanic_vtpro_transfer (oceanic_vtpro_device_t *device, const unsigned char command[], unsigned int csize, unsigned char answer[], unsigned int asize)
{
dc_status_t status = DC_STATUS_SUCCESS;
dc_device_t *abstract = (dc_device_t *) device;
// Send the command to the device. If the device responds with an
// ACK byte, the command was received successfully and the answer
// (if any) follows after the ACK byte. If the device responds with
// a NAK byte, we try to resend the command a number of times before
// returning an error.
unsigned int nretries = 0;
dc_status_t rc = DC_STATUS_SUCCESS;
while ((rc = oceanic_vtpro_send (device, command, csize)) != DC_STATUS_SUCCESS) {
if (rc != DC_STATUS_TIMEOUT && rc != DC_STATUS_PROTOCOL)
return rc;
// Abort if the maximum number of retries is reached.
if (nretries++ >= MAXRETRIES)
return rc;
}
if (asize) {
// Receive the answer of the dive computer.
status = dc_iostream_read (device->iostream, answer, asize, NULL);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to receive the answer.");
return status;
}
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
oceanic_vtpro_init (oceanic_vtpro_device_t *device)
{
dc_status_t status = DC_STATUS_SUCCESS;
dc_device_t *abstract = (dc_device_t *) device;
// Send the command to the dive computer.
unsigned char command[2][2] = {
{0xAA, 0x00},
{0x20, 0x00}};
status = dc_iostream_write (device->iostream, command[device->protocol], sizeof (command[device->protocol]), NULL);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to send the command.");
return status;
}
// Receive the answer of the dive computer.
unsigned char answer[13] = {0};
status = dc_iostream_read (device->iostream, answer, sizeof (answer), NULL);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to receive the answer.");
return status;
}
// Verify the answer.
const unsigned char response[2][13] = {
{0x4D, 0x4F, 0x44, 0x2D, 0x2D, 0x4F, 0x4B, 0x5F, 0x56, 0x32, 0x2E, 0x30, 0x30},
{0x49, 0x4E, 0x54, 0x52, 0x2D, 0x4F, 0x4B, 0x5F, 0x56, 0x31, 0x2E, 0x31, 0x31}};
if (memcmp (answer, response[device->protocol], sizeof (response[device->protocol])) != 0) {
ERROR (abstract->context, "Unexpected answer byte(s).");
return DC_STATUS_PROTOCOL;
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
oceanic_vtpro_quit (oceanic_vtpro_device_t *device)
{
dc_device_t *abstract = (dc_device_t *) device;
// Send the command to the dive computer.
unsigned char answer[1] = {0};
unsigned char command[4] = {0x6A, 0x05, 0xA5, 0x00};
dc_status_t rc = oceanic_vtpro_transfer (device, command, sizeof (command), answer, sizeof (answer));
if (rc != DC_STATUS_SUCCESS)
return rc;
// Verify the last byte of the answer.
if (answer[0] != END) {
ERROR (abstract->context, "Unexpected answer byte(s).");
return DC_STATUS_PROTOCOL;
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
oceanic_vtpro_calibrate (oceanic_vtpro_device_t *device)
{
dc_device_t *abstract = (dc_device_t *) device;
// Send the command to the dive computer.
// The timeout is temporary increased, because the
// device needs approximately 6 seconds to respond.
unsigned char answer[2] = {0};
unsigned char command[2] = {0x18, 0x00};
dc_status_t rc = dc_iostream_set_timeout (device->iostream, 9000);
if (rc != DC_STATUS_SUCCESS)
return rc;
rc = oceanic_vtpro_transfer (device, command, sizeof (command), answer, sizeof (answer));
if (rc != DC_STATUS_SUCCESS)
return rc;
rc = dc_iostream_set_timeout (device->iostream, 3000);
if (rc != DC_STATUS_SUCCESS)
return rc;
// Verify the last byte of the answer.
if (answer[1] != 0x00) {
ERROR (abstract->context, "Unexpected answer byte(s).");
return DC_STATUS_PROTOCOL;
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
oceanic_aeris500ai_device_logbook (dc_device_t *abstract, dc_event_progress_t *progress, dc_buffer_t *logbook)
{
dc_status_t rc = DC_STATUS_SUCCESS;
oceanic_vtpro_device_t *device = (oceanic_vtpro_device_t *) abstract;
assert (device != NULL);
assert (device->base.layout != NULL);
assert (device->base.layout->rb_logbook_entry_size == PAGESIZE / 2);
assert (device->base.layout->rb_logbook_begin == device->base.layout->rb_logbook_end);
assert (progress != NULL);
const oceanic_common_layout_t *layout = device->base.layout;
// Erase the buffer.
if (!dc_buffer_clear (logbook))
return DC_STATUS_NOMEMORY;
// Read the pointer data.
unsigned char pointers[PAGESIZE] = {0};
rc = oceanic_vtpro_device_read (abstract, layout->cf_pointers, pointers, sizeof (pointers));
if (rc != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to read the memory page.");
return rc;
}
// Get the logbook pointers.
unsigned int last = pointers[0x03];
// Update and emit a progress event.
progress->current += PAGESIZE;
progress->maximum += PAGESIZE + (last + 1) * PAGESIZE / 2;
device_event_emit (abstract, DC_EVENT_PROGRESS, progress);
// Allocate memory for the logbook entries.
if (!dc_buffer_reserve (logbook, (last + 1) * PAGESIZE / 2))
return DC_STATUS_NOMEMORY;
// Send the logbook index command.
unsigned char command[] = {0x52,
(last >> 8) & 0xFF, // high
(last ) & 0xFF, // low
0x00};
rc = oceanic_vtpro_transfer (device, command, sizeof (command), NULL, 0);
if (rc != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to send the logbook index command.");
return rc;
}
// Read the logbook index.
for (unsigned int i = 0; i < last + 1; ++i) {
// Receive the answer of the dive computer.
unsigned char answer[PAGESIZE / 2 + 1] = {0};
rc = dc_iostream_read (device->iostream, answer, sizeof(answer), NULL);
if (rc != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to receive the answer.");
return rc;
}
// Verify the checksum of the answer.
unsigned char crc = answer[PAGESIZE / 2];
unsigned char ccrc = checksum_add_uint4 (answer, PAGESIZE / 2, 0x00);
if (crc != ccrc) {
ERROR (abstract->context, "Unexpected answer checksum.");
return DC_STATUS_PROTOCOL;
}
// Update and emit a progress event.
progress->current += PAGESIZE / 2;
device_event_emit (abstract, DC_EVENT_PROGRESS, progress);
// Ignore uninitialized entries.
if (array_isequal (answer, PAGESIZE / 2, 0xFF)) {
WARNING (abstract->context, "Uninitialized logbook entries detected!");
continue;
}
// Compare the fingerprint to identify previously downloaded entries.
if (memcmp (answer, device->base.fingerprint, PAGESIZE / 2) == 0) {
dc_buffer_clear (logbook);
} else {
dc_buffer_append (logbook, answer, PAGESIZE / 2);
}
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
oceanic_vtpro_device_logbook (dc_device_t *abstract, dc_event_progress_t *progress, dc_buffer_t *logbook)
{
oceanic_vtpro_device_t *device = (oceanic_vtpro_device_t *) abstract;
if (device->model == AERIS500AI) {
return oceanic_aeris500ai_device_logbook (abstract, progress, logbook);
} else {
return oceanic_common_device_logbook (abstract, progress, logbook);
}
}
dc_status_t
oceanic_vtpro_device_open (dc_device_t **out, dc_context_t *context, const char *name, unsigned int model)
{
dc_status_t status = DC_STATUS_SUCCESS;
oceanic_vtpro_device_t *device = NULL;
if (out == NULL)
return DC_STATUS_INVALIDARGS;
// Allocate memory.
device = (oceanic_vtpro_device_t *) dc_device_allocate (context, &oceanic_vtpro_device_vtable.base);
if (device == NULL) {
ERROR (context, "Failed to allocate memory.");
return DC_STATUS_NOMEMORY;
}
// Initialize the base class.
oceanic_common_device_init (&device->base);
// Override the base class values.
device->base.multipage = MULTIPAGE;
// Set the default values.
device->iostream = NULL;
device->model = model;
if (model == AERIS500AI) {
device->protocol = INTR;
} else {
device->protocol = MOD;
}
// Open the device.
status = dc_serial_open (&device->iostream, context, name);
if (status != DC_STATUS_SUCCESS) {
ERROR (context, "Failed to open the serial port.");
goto error_free;
}
// Set the serial communication protocol (9600 8N1).
status = dc_iostream_configure (device->iostream, 9600, 8, DC_PARITY_NONE, DC_STOPBITS_ONE, DC_FLOWCONTROL_NONE);
if (status != DC_STATUS_SUCCESS) {
ERROR (context, "Failed to set the terminal attributes.");
goto error_close;
}
// Set the timeout for receiving data (3000 ms).
status = dc_iostream_set_timeout (device->iostream, 3000);
if (status != DC_STATUS_SUCCESS) {
ERROR (context, "Failed to set the timeout.");
goto error_close;
}
// Set the DTR line.
status = dc_iostream_set_dtr (device->iostream, 1);
if (status != DC_STATUS_SUCCESS) {
ERROR (context, "Failed to set the DTR line.");
goto error_close;
}
// Set the RTS line.
status = dc_iostream_set_rts (device->iostream, 1);
if (status != DC_STATUS_SUCCESS) {
ERROR (context, "Failed to set the RTS line.");
goto error_close;
}
// Give the interface 100 ms to settle and draw power up.
dc_iostream_sleep (device->iostream, device->protocol == MOD ? 100 : 1000);
// Make sure everything is in a sane state.
dc_iostream_purge (device->iostream, DC_DIRECTION_ALL);
// Initialize the data cable (MOD mode).
status = oceanic_vtpro_init (device);
if (status != DC_STATUS_SUCCESS) {
goto error_close;
}
// Switch the device from surface mode into download mode. Before sending
// this command, the device needs to be in PC mode (manually activated by
// the user), or already in download mode.
status = oceanic_vtpro_device_version ((dc_device_t *) device, device->base.version, sizeof (device->base.version));
if (status != DC_STATUS_SUCCESS) {
goto error_close;
}
// Calibrate the device. Although calibration is optional, it's highly
// recommended because it reduces the transfer time considerably, even
// when processing the command itself is quite slow.
status = oceanic_vtpro_calibrate (device);
if (status != DC_STATUS_SUCCESS) {
goto error_close;
}
// Override the base class values.
if (model == AERIS500AI) {
device->base.layout = &aeris_500ai_layout;
} else if (OCEANIC_COMMON_MATCH (device->base.version, oceanic_wisdom_version)) {
device->base.layout = &oceanic_wisdom_layout;
} else if (OCEANIC_COMMON_MATCH (device->base.version, oceanic_vtpro_version)) {
device->base.layout = &oceanic_vtpro_layout;
} else {
WARNING (context, "Unsupported device detected!");
device->base.layout = &oceanic_vtpro_layout;
}
*out = (dc_device_t*) device;
return DC_STATUS_SUCCESS;
error_close:
dc_iostream_close (device->iostream);
error_free:
dc_device_deallocate ((dc_device_t *) device);
return status;
}
static dc_status_t
oceanic_vtpro_device_close (dc_device_t *abstract)
{
dc_status_t status = DC_STATUS_SUCCESS;
oceanic_vtpro_device_t *device = (oceanic_vtpro_device_t*) abstract;
dc_status_t rc = DC_STATUS_SUCCESS;
// Switch the device back to surface mode.
rc = oceanic_vtpro_quit (device);
if (rc != DC_STATUS_SUCCESS) {
dc_status_set_error(&status, rc);
}
// Close the device.
rc = dc_iostream_close (device->iostream);
if (rc != DC_STATUS_SUCCESS) {
dc_status_set_error(&status, rc);
}
return status;
}
dc_status_t
oceanic_vtpro_device_keepalive (dc_device_t *abstract)
{
oceanic_vtpro_device_t *device = (oceanic_vtpro_device_t*) abstract;
if (!ISINSTANCE (abstract))
return DC_STATUS_INVALIDARGS;
// Send the command to the dive computer.
unsigned char answer[1] = {0};
unsigned char command[4] = {0x6A, 0x08, 0x00, 0x00};
dc_status_t rc = oceanic_vtpro_transfer (device, command, sizeof (command), answer, sizeof (answer));
if (rc != DC_STATUS_SUCCESS)
return rc;
// Verify the last byte of the answer.
if (answer[0] != END) {
ERROR (abstract->context, "Unexpected answer byte(s).");
return DC_STATUS_PROTOCOL;
}
return DC_STATUS_SUCCESS;
}
dc_status_t
oceanic_vtpro_device_version (dc_device_t *abstract, unsigned char data[], unsigned int size)
{
oceanic_vtpro_device_t *device = (oceanic_vtpro_device_t*) abstract;
if (!ISINSTANCE (abstract))
return DC_STATUS_INVALIDARGS;
if (size < PAGESIZE)
return DC_STATUS_INVALIDARGS;
// Switch the device into download mode. The response is ignored here,
// since it is identical (except for the missing trailing byte) to the
// response of the first part of the other command in this function.
unsigned char cmd[2] = {0x88, 0x00};
unsigned char ans[PAGESIZE / 2 + 1] = {0};
dc_status_t rc = oceanic_vtpro_transfer (device, cmd, sizeof (cmd), ans, sizeof (ans));
if (rc != DC_STATUS_SUCCESS)
return rc;
// Verify the checksum of the answer.
unsigned char crc = ans[PAGESIZE / 2];
unsigned char ccrc = checksum_add_uint4 (ans, PAGESIZE / 2, 0x00);
if (crc != ccrc) {
ERROR (abstract->context, "Unexpected answer checksum.");
return DC_STATUS_PROTOCOL;
}
if (device->protocol == MOD) {
// Obtain the device identification string. This string is
// split over two packets, but we join both parts again.
for (unsigned int i = 0; i < 2; ++i) {
unsigned char command[4] = {0x72, 0x03, i * 0x10, 0x00};
unsigned char answer[PAGESIZE / 2 + 2] = {0};
rc = oceanic_vtpro_transfer (device, command, sizeof (command), answer, sizeof (answer));
if (rc != DC_STATUS_SUCCESS)
return rc;
// Verify the checksum of the answer.
unsigned char crc = answer[PAGESIZE / 2];
unsigned char ccrc = checksum_add_uint4 (answer, PAGESIZE / 2, 0x00);
if (crc != ccrc) {
ERROR (abstract->context, "Unexpected answer checksum.");
return DC_STATUS_PROTOCOL;
}
// Verify the last byte of the answer.
if (answer[PAGESIZE / 2 + 1] != END) {
ERROR (abstract->context, "Unexpected answer byte.");
return DC_STATUS_PROTOCOL;
}
// Append the answer to the output buffer.
memcpy (data + i * PAGESIZE / 2, answer, PAGESIZE / 2);
}
} else {
// Return an empty device identification string.
memset (data, 0x00, PAGESIZE);
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
oceanic_vtpro_device_read (dc_device_t *abstract, unsigned int address, unsigned char data[], unsigned int size)
{
oceanic_vtpro_device_t *device = (oceanic_vtpro_device_t*) abstract;
if ((address % PAGESIZE != 0) ||
(size % PAGESIZE != 0))
return DC_STATUS_INVALIDARGS;
unsigned int nbytes = 0;
while (nbytes < size) {
// Calculate the number of packages.
unsigned int npackets = (size - nbytes) / PAGESIZE;
if (npackets > MULTIPAGE)
npackets = MULTIPAGE;
// Read the package.
unsigned int first = address / PAGESIZE;
unsigned int last = first + npackets - 1;
unsigned char answer[(PAGESIZE + 1) * MULTIPAGE] = {0};
unsigned char command[6] = {0x34,
(first >> 8) & 0xFF, // high
(first ) & 0xFF, // low
(last >> 8) & 0xFF, // high
(last ) & 0xFF, // low
0x00};
dc_status_t rc = oceanic_vtpro_transfer (device, command, sizeof (command), answer, (PAGESIZE + 1) * npackets);
if (rc != DC_STATUS_SUCCESS)
return rc;
unsigned int offset = 0;
for (unsigned int i = 0; i < npackets; ++i) {
// Verify the checksum of the answer.
unsigned char crc = answer[offset + PAGESIZE];
unsigned char ccrc = checksum_add_uint8 (answer + offset, PAGESIZE, 0x00);
if (crc != ccrc) {
ERROR (abstract->context, "Unexpected answer checksum.");
return DC_STATUS_PROTOCOL;
}
memcpy (data, answer + offset, PAGESIZE);
offset += PAGESIZE + 1;
nbytes += PAGESIZE;
address += PAGESIZE;
data += PAGESIZE;
}
}
return DC_STATUS_SUCCESS;
}