libdc/src/hw_frog.c
Jef Driesen 6419e189a4 Add a single isinstance function per object type.
Currently, each backend has it's own function to verify whether the
object vtable pointer is the expected one. All these functions can be
removed in favor of a single isintance function in the base class,
which takes the expected vtable pointer as a parameter.

Functions which are called through the vtable, don't need to verify the
vtable pointer, and those checks are removed.
2013-04-16 12:18:54 +02:00

551 lines
15 KiB
C

/*
* libdivecomputer
*
* Copyright (C) 2012 Jef Driesen
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#include <string.h> // memcmp, memcpy
#include <stdlib.h> // malloc, free
#include <libdivecomputer/hw_frog.h>
#include "context-private.h"
#include "device-private.h"
#include "serial.h"
#include "checksum.h"
#include "ringbuffer.h"
#include "array.h"
#define ISINSTANCE(device) dc_device_isinstance((device), &hw_frog_device_vtable)
#define EXITCODE(rc) \
( \
rc == -1 ? DC_STATUS_IO : DC_STATUS_TIMEOUT \
)
#define SZ_DISPLAY 15
#define SZ_CUSTOMTEXT 13
#define SZ_VERSION (SZ_CUSTOMTEXT + 4)
#define RB_LOGBOOK_SIZE 256
#define RB_LOGBOOK_COUNT 256
#define RB_PROFILE_BEGIN 0x000000
#define RB_PROFILE_END 0x200000
#define RB_PROFILE_DISTANCE(a,b) ringbuffer_distance (a, b, 0, RB_PROFILE_BEGIN, RB_PROFILE_END)
#define READY 0x4D
#define HEADER 0x61
#define CLOCK 0x62
#define CUSTOMTEXT 0x63
#define DIVE 0x66
#define IDENTITY 0x69
#define DISPLAY 0x6E
#define INIT 0xBB
#define EXIT 0xFF
typedef struct hw_frog_device_t {
dc_device_t base;
serial_t *port;
unsigned char fingerprint[5];
} hw_frog_device_t;
static dc_status_t hw_frog_device_set_fingerprint (dc_device_t *abstract, const unsigned char data[], unsigned int size);
static dc_status_t hw_frog_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata);
static dc_status_t hw_frog_device_close (dc_device_t *abstract);
static const dc_device_vtable_t hw_frog_device_vtable = {
DC_FAMILY_HW_FROG,
hw_frog_device_set_fingerprint, /* set_fingerprint */
NULL, /* read */
NULL, /* write */
NULL, /* dump */
hw_frog_device_foreach, /* foreach */
hw_frog_device_close /* close */
};
static dc_status_t
hw_frog_transfer (hw_frog_device_t *device,
dc_event_progress_t *progress,
unsigned char cmd,
const unsigned char input[],
unsigned int isize,
unsigned char output[],
unsigned int osize)
{
dc_device_t *abstract = (dc_device_t *) device;
// Send the command.
unsigned char command[1] = {cmd};
int n = serial_write (device->port, command, sizeof (command));
if (n != sizeof (command)) {
ERROR (abstract->context, "Failed to send the command.");
return EXITCODE (n);
}
if (cmd != INIT && cmd != HEADER) {
// Read the echo.
unsigned char answer[1] = {0};
n = serial_read (device->port, answer, sizeof (answer));
if (n != sizeof (answer)) {
ERROR (abstract->context, "Failed to receive the echo.");
return EXITCODE (n);
}
// Verify the echo.
if (memcmp (answer, command, sizeof (command)) != 0) {
ERROR (abstract->context, "Unexpected echo.");
return DC_STATUS_PROTOCOL;
}
}
if (input) {
// Send the input data packet.
n = serial_write (device->port, input, isize);
if (n != isize) {
ERROR (abstract->context, "Failed to send the data packet.");
return EXITCODE (n);
}
}
if (output) {
unsigned int nbytes = 0;
while (nbytes < osize) {
// Set the minimum packet size.
unsigned int len = 1024;
// Increase the packet size if more data is immediately available.
int available = serial_get_received (device->port);
if (available > len)
len = available;
// Limit the packet size to the total size.
if (nbytes + len > osize)
len = osize - nbytes;
// Read the packet.
n = serial_read (device->port, output + nbytes, len);
if (n != len) {
ERROR (abstract->context, "Failed to receive the answer.");
return EXITCODE (n);
}
// Update and emit a progress event.
if (progress) {
progress->current += len;
device_event_emit ((dc_device_t *) device, DC_EVENT_PROGRESS, progress);
}
nbytes += len;
}
}
if (cmd != EXIT) {
// Read the ready byte.
unsigned char answer[1] = {0};
n = serial_read (device->port, answer, sizeof (answer));
if (n != sizeof (answer)) {
ERROR (abstract->context, "Failed to receive the ready byte.");
return EXITCODE (n);
}
// Verify the ready byte.
if (answer[0] != READY) {
ERROR (abstract->context, "Unexpected ready byte.");
return DC_STATUS_PROTOCOL;
}
}
return DC_STATUS_SUCCESS;
}
dc_status_t
hw_frog_device_open (dc_device_t **out, dc_context_t *context, const char *name)
{
if (out == NULL)
return DC_STATUS_INVALIDARGS;
// Allocate memory.
hw_frog_device_t *device = (hw_frog_device_t *) malloc (sizeof (hw_frog_device_t));
if (device == NULL) {
ERROR (context, "Failed to allocate memory.");
return DC_STATUS_NOMEMORY;
}
// Initialize the base class.
device_init (&device->base, context, &hw_frog_device_vtable);
// Set the default values.
device->port = NULL;
memset (device->fingerprint, 0, sizeof (device->fingerprint));
// Open the device.
int rc = serial_open (&device->port, context, name);
if (rc == -1) {
ERROR (context, "Failed to open the serial port.");
free (device);
return DC_STATUS_IO;
}
// Set the serial communication protocol (115200 8N1).
rc = serial_configure (device->port, 115200, 8, SERIAL_PARITY_NONE, 1, SERIAL_FLOWCONTROL_NONE);
if (rc == -1) {
ERROR (context, "Failed to set the terminal attributes.");
serial_close (device->port);
free (device);
return DC_STATUS_IO;
}
// Set the timeout for receiving data (3000ms).
if (serial_set_timeout (device->port, 3000) == -1) {
ERROR (context, "Failed to set the timeout.");
serial_close (device->port);
free (device);
return DC_STATUS_IO;
}
// Make sure everything is in a sane state.
serial_sleep (device->port, 300);
serial_flush (device->port, SERIAL_QUEUE_BOTH);
// Send the init command.
dc_status_t status = hw_frog_transfer (device, NULL, INIT, NULL, 0, NULL, 0);
if (status != DC_STATUS_SUCCESS) {
ERROR (context, "Failed to send the command.");
serial_close (device->port);
free (device);
return status;
}
*out = (dc_device_t *) device;
return DC_STATUS_SUCCESS;
}
static dc_status_t
hw_frog_device_close (dc_device_t *abstract)
{
hw_frog_device_t *device = (hw_frog_device_t*) abstract;
// Send the exit command.
dc_status_t status = hw_frog_transfer (device, NULL, EXIT, NULL, 0, NULL, 0);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to send the command.");
serial_close (device->port);
free (device);
return status;
}
// Close the device.
if (serial_close (device->port) == -1) {
free (device);
return DC_STATUS_IO;
}
// Free memory.
free (device);
return DC_STATUS_SUCCESS;
}
static dc_status_t
hw_frog_device_set_fingerprint (dc_device_t *abstract, const unsigned char data[], unsigned int size)
{
hw_frog_device_t *device = (hw_frog_device_t *) abstract;
if (size && size != sizeof (device->fingerprint))
return DC_STATUS_INVALIDARGS;
if (size)
memcpy (device->fingerprint, data, sizeof (device->fingerprint));
else
memset (device->fingerprint, 0, sizeof (device->fingerprint));
return DC_STATUS_SUCCESS;
}
dc_status_t
hw_frog_device_version (dc_device_t *abstract, unsigned char data[], unsigned int size)
{
hw_frog_device_t *device = (hw_frog_device_t *) abstract;
if (!ISINSTANCE (abstract))
return DC_STATUS_INVALIDARGS;
if (size != SZ_VERSION)
return DC_STATUS_INVALIDARGS;
// Send the command.
dc_status_t rc = hw_frog_transfer (device, NULL, IDENTITY, NULL, 0, data, size);
if (rc != DC_STATUS_SUCCESS)
return rc;
return DC_STATUS_SUCCESS;
}
static dc_status_t
hw_frog_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata)
{
hw_frog_device_t *device = (hw_frog_device_t *) abstract;
// Enable progress notifications.
dc_event_progress_t progress = EVENT_PROGRESS_INITIALIZER;
progress.maximum = (RB_LOGBOOK_SIZE * RB_LOGBOOK_COUNT) +
(RB_PROFILE_END - RB_PROFILE_BEGIN);
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
// Download the version data.
unsigned char id[SZ_VERSION] = {0};
dc_status_t rc = hw_frog_device_version (abstract, id, sizeof (id));
if (rc != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to read the version.");
return rc;
}
// Emit a device info event.
dc_event_devinfo_t devinfo;
devinfo.model = 0;
devinfo.firmware = array_uint16_be (id + 2);
devinfo.serial = array_uint16_le (id + 0);
device_event_emit (abstract, DC_EVENT_DEVINFO, &devinfo);
// Allocate memory.
unsigned char *header = (unsigned char *) malloc (RB_LOGBOOK_SIZE * RB_LOGBOOK_COUNT);
if (header == NULL) {
ERROR (abstract->context, "Failed to allocate memory.");
return DC_STATUS_NOMEMORY;
}
// Download the logbook headers.
rc = hw_frog_transfer (device, &progress, HEADER,
NULL, 0, header, RB_LOGBOOK_SIZE * RB_LOGBOOK_COUNT);
if (rc != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to read the header.");
free (header);
return rc;
}
// Locate the most recent dive.
// The device maintains an internal counter which is incremented for every
// dive, and the current value at the time of the dive is stored in the
// dive header. Thus the most recent dive will have the highest value.
unsigned int count = 0;
unsigned int latest = 0;
unsigned int maximum = 0;
for (unsigned int i = 0; i < RB_LOGBOOK_COUNT; ++i) {
unsigned int offset = i * RB_LOGBOOK_SIZE;
// Ignore uninitialized header entries.
if (array_isequal (header + offset, RB_LOGBOOK_SIZE, 0xFF))
break;
// Get the internal dive number.
unsigned int current = array_uint16_le (header + offset + 52);
if (current > maximum) {
maximum = current;
latest = i;
}
count++;
}
// Calculate the total and maximum size.
unsigned int ndives = 0;
unsigned int size = 0;
unsigned int maxsize = 0;
for (unsigned int i = 0; i < count; ++i) {
unsigned int idx = (latest + RB_LOGBOOK_COUNT - i) % RB_LOGBOOK_COUNT;
unsigned int offset = idx * RB_LOGBOOK_SIZE;
// Get the ringbuffer pointers.
unsigned int begin = array_uint24_le (header + offset + 2);
unsigned int end = array_uint24_le (header + offset + 5);
if (begin < RB_PROFILE_BEGIN ||
begin >= RB_PROFILE_END ||
end < RB_PROFILE_BEGIN ||
end >= RB_PROFILE_END)
{
ERROR (abstract->context, "Invalid ringbuffer pointer detected.");
free (header);
return DC_STATUS_DATAFORMAT;
}
// Calculate the profile length.
unsigned int length = RB_LOGBOOK_SIZE + RB_PROFILE_DISTANCE (begin, end) - 6;
// Check the fingerprint data.
if (memcmp (header + offset + 9, device->fingerprint, sizeof (device->fingerprint)) == 0)
break;
if (length > maxsize)
maxsize = length;
size += length;
ndives++;
}
// Update and emit a progress event.
progress.maximum = (RB_LOGBOOK_SIZE * RB_LOGBOOK_COUNT) + size;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
// Finish immediately if there are no dives available.
if (ndives == 0) {
free (header);
return DC_STATUS_SUCCESS;
}
// Allocate enough memory for the largest dive.
unsigned char *profile = (unsigned char *) malloc (maxsize);
if (profile == NULL) {
ERROR (abstract->context, "Failed to allocate memory.");
free (header);
return DC_STATUS_NOMEMORY;
}
// Download the dives.
for (unsigned int i = 0; i < ndives; ++i) {
unsigned int idx = (latest + RB_LOGBOOK_COUNT - i) % RB_LOGBOOK_COUNT;
unsigned int offset = idx * RB_LOGBOOK_SIZE;
// Get the ringbuffer pointers.
unsigned int begin = array_uint24_le (header + offset + 2);
unsigned int end = array_uint24_le (header + offset + 5);
// Calculate the profile length.
unsigned int length = RB_LOGBOOK_SIZE + RB_PROFILE_DISTANCE (begin, end) - 6;
// Download the dive.
unsigned char number[1] = {idx};
rc = hw_frog_transfer (device, &progress, DIVE,
number, sizeof (number), profile, length);
if (rc != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to read the dive.");
free (profile);
free (header);
return rc;
}
// Verify the header in the logbook and profile are identical.
if (memcmp (profile, header + offset, RB_LOGBOOK_SIZE) != 0) {
ERROR (abstract->context, "Unexpected profile header.");
free (profile);
free (header);
return rc;
}
if (callback && !callback (profile, length, profile + 9, sizeof (device->fingerprint), userdata))
break;
}
free (profile);
free (header);
return DC_STATUS_SUCCESS;
}
dc_status_t
hw_frog_device_clock (dc_device_t *abstract, const dc_datetime_t *datetime)
{
hw_frog_device_t *device = (hw_frog_device_t *) abstract;
if (!ISINSTANCE (abstract))
return DC_STATUS_INVALIDARGS;
if (datetime == NULL) {
ERROR (abstract->context, "Invalid parameter specified.");
return DC_STATUS_INVALIDARGS;
}
// Send the command.
unsigned char packet[6] = {
datetime->hour, datetime->minute, datetime->second,
datetime->month, datetime->day, datetime->year - 2000};
dc_status_t rc = hw_frog_transfer (device, NULL, CLOCK, packet, sizeof (packet), NULL, 0);
if (rc != DC_STATUS_SUCCESS)
return rc;
return DC_STATUS_SUCCESS;
}
dc_status_t
hw_frog_device_display (dc_device_t *abstract, const char *text)
{
hw_frog_device_t *device = (hw_frog_device_t *) abstract;
if (!ISINSTANCE (abstract))
return DC_STATUS_INVALIDARGS;
// Check the maximum length.
size_t length = (text ? strlen (text) : 0);
if (length > SZ_DISPLAY) {
ERROR (abstract->context, "Invalid parameter specified.");
return DC_STATUS_INVALIDARGS;
}
// Pad the data packet with spaces.
unsigned char packet[SZ_DISPLAY] = {0};
if (length)
memcpy (packet, text, length);
memset (packet + length, 0x20, sizeof (packet) - length);
// Send the command.
dc_status_t rc = hw_frog_transfer (device, NULL, DISPLAY, packet, sizeof (packet), NULL, 0);
if (rc != DC_STATUS_SUCCESS)
return rc;
return DC_STATUS_SUCCESS;
}
dc_status_t
hw_frog_device_customtext (dc_device_t *abstract, const char *text)
{
hw_frog_device_t *device = (hw_frog_device_t *) abstract;
if (!ISINSTANCE (abstract))
return DC_STATUS_INVALIDARGS;
// Check the maximum length.
size_t length = (text ? strlen (text) : 0);
if (length > SZ_CUSTOMTEXT) {
ERROR (abstract->context, "Invalid parameter specified.");
return DC_STATUS_INVALIDARGS;
}
// Pad the data packet with spaces.
unsigned char packet[SZ_CUSTOMTEXT] = {0};
if (length)
memcpy (packet, text, length);
memset (packet + length, 0x20, sizeof (packet) - length);
// Send the command.
dc_status_t rc = hw_frog_transfer (device, NULL, CUSTOMTEXT, packet, sizeof (packet), NULL, 0);
if (rc != DC_STATUS_SUCCESS)
return rc;
return DC_STATUS_SUCCESS;
}