libdc/src/mares_darwin_parser.c
Jef Driesen 12c77a228e Add a public api to configure the clock synchronization
For dive computers where the reference time (epoch) of the device is
unknown, libdivecomputer uses the current time of the device (devtime)
and the host system (systime) to synchronize both clocks.

Currently, both timestamps are passed directly to the constructor of the
parser. With the new public function, the application can adjust the
timestamps afterwards.
2022-08-11 17:36:26 +02:00

303 lines
7.9 KiB
C

/*
* libdivecomputer
*
* Copyright (C) 2011 Jef Driesen
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#include <stdlib.h>
#include <string.h>
#include <libdivecomputer/units.h>
#include "mares_darwin.h"
#include "context-private.h"
#include "parser-private.h"
#include "array.h"
#define ISINSTANCE(parser) dc_parser_isinstance((parser), &mares_darwin_parser_vtable)
#define DARWIN 0
#define DARWINAIR 1
#define AIR 0
#define GAUGE 1
#define NITROX 2
typedef struct mares_darwin_parser_t mares_darwin_parser_t;
struct mares_darwin_parser_t {
dc_parser_t base;
unsigned int model;
unsigned int headersize;
unsigned int samplesize;
};
static dc_status_t mares_darwin_parser_set_data (dc_parser_t *abstract, const unsigned char *data, unsigned int size);
static dc_status_t mares_darwin_parser_get_datetime (dc_parser_t *abstract, dc_datetime_t *datetime);
static dc_status_t mares_darwin_parser_get_field (dc_parser_t *abstract, dc_field_type_t type, unsigned int flags, void *value);
static dc_status_t mares_darwin_parser_samples_foreach (dc_parser_t *abstract, dc_sample_callback_t callback, void *userdata);
static const dc_parser_vtable_t mares_darwin_parser_vtable = {
sizeof(mares_darwin_parser_t),
DC_FAMILY_MARES_DARWIN,
mares_darwin_parser_set_data, /* set_data */
NULL, /* set_clock */
NULL, /* set_atmospheric */
NULL, /* set_density */
mares_darwin_parser_get_datetime, /* datetime */
mares_darwin_parser_get_field, /* fields */
mares_darwin_parser_samples_foreach, /* samples_foreach */
NULL /* destroy */
};
dc_status_t
mares_darwin_parser_create (dc_parser_t **out, dc_context_t *context, unsigned int model)
{
mares_darwin_parser_t *parser = NULL;
if (out == NULL)
return DC_STATUS_INVALIDARGS;
// Allocate memory.
parser = (mares_darwin_parser_t *) dc_parser_allocate (context, &mares_darwin_parser_vtable);
if (parser == NULL) {
ERROR (context, "Failed to allocate memory.");
return DC_STATUS_NOMEMORY;
}
parser->model = model;
if (model == DARWINAIR) {
parser->headersize = 60;
parser->samplesize = 3;
} else {
parser->headersize = 52;
parser->samplesize = 2;
}
*out = (dc_parser_t *) parser;
return DC_STATUS_SUCCESS;
}
static dc_status_t
mares_darwin_parser_set_data (dc_parser_t *abstract, const unsigned char *data, unsigned int size)
{
return DC_STATUS_SUCCESS;
}
static dc_status_t
mares_darwin_parser_get_datetime (dc_parser_t *abstract, dc_datetime_t *datetime)
{
mares_darwin_parser_t *parser = (mares_darwin_parser_t *) abstract;
if (abstract->size < parser->headersize)
return DC_STATUS_DATAFORMAT;
const unsigned char *p = abstract->data;
if (datetime) {
datetime->year = array_uint16_be (p);
datetime->month = p[2];
datetime->day = p[3];
datetime->hour = p[4];
datetime->minute = p[5];
datetime->second = 0;
datetime->timezone = DC_TIMEZONE_NONE;
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
mares_darwin_parser_get_field (dc_parser_t *abstract, dc_field_type_t type, unsigned int flags, void *value)
{
mares_darwin_parser_t *parser = (mares_darwin_parser_t *) abstract;
if (abstract->size < parser->headersize)
return DC_STATUS_DATAFORMAT;
const unsigned char *p = abstract->data;
dc_gasmix_t *gasmix = (dc_gasmix_t *) value;
dc_tank_t *tank = (dc_tank_t *) value;
unsigned int mode = p[0x0C] & 0x03;
if (value) {
switch (type) {
case DC_FIELD_DIVETIME:
*((unsigned int *) value) = array_uint16_be (p + 0x06) * 20;
break;
case DC_FIELD_MAXDEPTH:
*((double *) value) = array_uint16_be (p + 0x08) / 10.0;
break;
case DC_FIELD_GASMIX_COUNT:
if (mode == GAUGE) {
*((unsigned int *) value) = 0;
} else {
*((unsigned int *) value) = 1;
}
break;
case DC_FIELD_GASMIX:
gasmix->helium = 0.0;
if (mode == NITROX) {
gasmix->oxygen = p[0x0E] / 100.0;
} else {
gasmix->oxygen = 0.21;
}
gasmix->nitrogen = 1.0 - gasmix->oxygen - gasmix->helium;
break;
case DC_FIELD_TEMPERATURE_MINIMUM:
*((double *) value) = (signed char) p[0x0A];
break;
case DC_FIELD_TANK_COUNT:
if (parser->model == DARWINAIR) {
*((unsigned int *) value) = 1;
} else {
*((unsigned int *) value) = 0;
}
break;
case DC_FIELD_TANK:
if (parser->model == DARWINAIR) {
tank->type = DC_TANKVOLUME_METRIC;
tank->volume = p[0x13] / 10.0;
tank->workpressure = 0.0;
tank->gasmix = 0;
tank->beginpressure = array_uint16_be (p + 0x17);
tank->endpressure = array_uint16_be (p + 0x19);
} else {
return DC_STATUS_UNSUPPORTED;
}
break;
case DC_FIELD_DIVEMODE:
switch (mode) {
case AIR:
case NITROX:
*((dc_divemode_t *) value) = DC_DIVEMODE_OC;
break;
case GAUGE:
*((dc_divemode_t *) value) = DC_DIVEMODE_GAUGE;
break;
default:
return DC_STATUS_DATAFORMAT;
}
break;
default:
return DC_STATUS_UNSUPPORTED;
}
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
mares_darwin_parser_samples_foreach (dc_parser_t *abstract, dc_sample_callback_t callback, void *userdata)
{
mares_darwin_parser_t *parser = (mares_darwin_parser_t *) abstract;
if (abstract->size < parser->headersize)
return DC_STATUS_DATAFORMAT;
unsigned int time = 0;
unsigned int mode = abstract->data[0x0C] & 0x03;
unsigned int pressure = array_uint16_be (abstract->data + 0x17);
unsigned int gasmix_previous = 0xFFFFFFFF;
unsigned int gasmix = gasmix_previous;
if (mode != GAUGE) {
gasmix = 0;
}
unsigned int offset = parser->headersize;
while (offset + parser->samplesize <= abstract->size) {
dc_sample_value_t sample = {0};
unsigned int value = array_uint16_le (abstract->data + offset);
unsigned int depth = value & 0x07FF;
unsigned int ascent = (value & 0xE000) >> 13;
unsigned int violation = (value & 0x1000) >> 12;
unsigned int deco = (value & 0x0800) >> 11;
// Surface Time (seconds).
time += 20;
sample.time = time;
if (callback) callback (DC_SAMPLE_TIME, sample, userdata);
// Depth (1/10 m).
sample.depth = depth / 10.0;
if (callback) callback (DC_SAMPLE_DEPTH, sample, userdata);
// Gas change.
if (gasmix != gasmix_previous) {
sample.gasmix = gasmix;
if (callback) callback (DC_SAMPLE_GASMIX, sample, userdata);
gasmix_previous = gasmix;
}
// Ascent rate
if (ascent) {
sample.event.type = SAMPLE_EVENT_ASCENT;
sample.event.time = 0;
sample.event.flags = 0;
sample.event.value = ascent;
if (callback) callback (DC_SAMPLE_EVENT, sample, userdata);
}
// Deco violation
if (violation) {
sample.event.type = SAMPLE_EVENT_CEILING;
sample.event.time = 0;
sample.event.flags = 0;
sample.event.value = 0;
if (callback) callback (DC_SAMPLE_EVENT, sample, userdata);
}
// Deco stop
if (deco) {
sample.deco.type = DC_DECO_DECOSTOP;
} else {
sample.deco.type = DC_DECO_NDL;
}
sample.deco.time = 0;
sample.deco.depth = 0.0;
if (callback) callback (DC_SAMPLE_DECO, sample, userdata);
if (parser->samplesize == 3) {
unsigned int type = (time / 20 + 2) % 3;
if (type == 0) {
// Tank Pressure (bar)
pressure -= abstract->data[offset + 2];
sample.pressure.tank = 0;
sample.pressure.value = pressure;
if (callback) callback (DC_SAMPLE_PRESSURE, sample, userdata);
}
}
offset += parser->samplesize;
}
return DC_STATUS_SUCCESS;
}