For dive computers where the reference time (epoch) of the device is unknown, libdivecomputer uses the current time of the device (devtime) and the host system (systime) to synchronize both clocks. Currently, both timestamps are passed directly to the constructor of the parser. With the new public function, the application can adjust the timestamps afterwards.
272 lines
7.6 KiB
C
272 lines
7.6 KiB
C
/*
|
|
* libdivecomputer
|
|
*
|
|
* Copyright (C) 2014 Jef Driesen
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
|
|
* MA 02110-1301 USA
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <libdivecomputer/units.h>
|
|
|
|
#include "citizen_aqualand.h"
|
|
#include "context-private.h"
|
|
#include "parser-private.h"
|
|
#include "array.h"
|
|
|
|
#define ISINSTANCE(parser) dc_device_isinstance((parser), &citizen_aqualand_parser_vtable)
|
|
|
|
#define SZ_HEADER 32
|
|
|
|
typedef struct citizen_aqualand_parser_t {
|
|
dc_parser_t base;
|
|
} citizen_aqualand_parser_t;
|
|
|
|
static dc_status_t citizen_aqualand_parser_set_data (dc_parser_t *abstract, const unsigned char *data, unsigned int size);
|
|
static dc_status_t citizen_aqualand_parser_get_datetime (dc_parser_t *abstract, dc_datetime_t *datetime);
|
|
static dc_status_t citizen_aqualand_parser_get_field (dc_parser_t *abstract, dc_field_type_t type, unsigned int flags, void *value);
|
|
static dc_status_t citizen_aqualand_parser_samples_foreach (dc_parser_t *abstract, dc_sample_callback_t callback, void *userdata);
|
|
|
|
static const dc_parser_vtable_t citizen_aqualand_parser_vtable = {
|
|
sizeof(citizen_aqualand_parser_t),
|
|
DC_FAMILY_CITIZEN_AQUALAND,
|
|
citizen_aqualand_parser_set_data, /* set_data */
|
|
NULL, /* set_clock */
|
|
NULL, /* set_atmospheric */
|
|
NULL, /* set_density */
|
|
citizen_aqualand_parser_get_datetime, /* datetime */
|
|
citizen_aqualand_parser_get_field, /* fields */
|
|
citizen_aqualand_parser_samples_foreach, /* samples_foreach */
|
|
NULL /* destroy */
|
|
};
|
|
|
|
|
|
dc_status_t
|
|
citizen_aqualand_parser_create (dc_parser_t **out, dc_context_t *context)
|
|
{
|
|
citizen_aqualand_parser_t *parser = NULL;
|
|
|
|
if (out == NULL)
|
|
return DC_STATUS_INVALIDARGS;
|
|
|
|
// Allocate memory.
|
|
parser = (citizen_aqualand_parser_t *) dc_parser_allocate (context, &citizen_aqualand_parser_vtable);
|
|
if (parser == NULL) {
|
|
ERROR (context, "Failed to allocate memory.");
|
|
return DC_STATUS_NOMEMORY;
|
|
}
|
|
|
|
*out = (dc_parser_t*) parser;
|
|
|
|
return DC_STATUS_SUCCESS;
|
|
}
|
|
|
|
|
|
static dc_status_t
|
|
citizen_aqualand_parser_set_data (dc_parser_t *abstract, const unsigned char *data, unsigned int size)
|
|
{
|
|
return DC_STATUS_SUCCESS;
|
|
}
|
|
|
|
|
|
static dc_status_t
|
|
citizen_aqualand_parser_get_datetime (dc_parser_t *abstract, dc_datetime_t *datetime)
|
|
{
|
|
if (abstract->size < SZ_HEADER)
|
|
return DC_STATUS_DATAFORMAT;
|
|
|
|
const unsigned char *p = abstract->data;
|
|
|
|
if (datetime) {
|
|
datetime->year = bcd2dec(p[0x05]) * 100 + bcd2dec(p[0x06]);
|
|
datetime->month = bcd2dec(p[0x07]);
|
|
datetime->day = bcd2dec(p[0x08]);
|
|
datetime->hour = bcd2dec(p[0x0A]);
|
|
datetime->minute = bcd2dec(p[0x0B]);
|
|
datetime->second = bcd2dec(p[0x0C]);
|
|
datetime->timezone = DC_TIMEZONE_NONE;
|
|
}
|
|
|
|
return DC_STATUS_SUCCESS;
|
|
}
|
|
|
|
|
|
static dc_status_t
|
|
citizen_aqualand_parser_get_field (dc_parser_t *abstract, dc_field_type_t type, unsigned int flags, void *value)
|
|
{
|
|
if (abstract->size < SZ_HEADER)
|
|
return DC_STATUS_DATAFORMAT;
|
|
|
|
const unsigned char *data = abstract->data;
|
|
|
|
unsigned int metric = (data[0x04] == 0xA6 ? 0 : 1);
|
|
unsigned int maxdepth = bcd2dec(data[0x12]) * 10 + ((data[0x13] >> 4) & 0x0F);
|
|
unsigned int divetime = (data[0x16] & 0x0F) * 100 + bcd2dec(data[0x17]);
|
|
|
|
if (value) {
|
|
switch (type) {
|
|
case DC_FIELD_DIVETIME:
|
|
*((unsigned int *) value) = divetime * 60;
|
|
break;
|
|
case DC_FIELD_MAXDEPTH:
|
|
if (metric)
|
|
*((double *) value) = maxdepth / 10.0;
|
|
else
|
|
*((double *) value) = maxdepth * FEET;
|
|
break;
|
|
case DC_FIELD_GASMIX_COUNT:
|
|
*((unsigned int *) value) = 0;
|
|
break;
|
|
case DC_FIELD_DIVEMODE:
|
|
*((dc_divemode_t *) value) = DC_DIVEMODE_GAUGE;
|
|
break;
|
|
default:
|
|
return DC_STATUS_UNSUPPORTED;
|
|
}
|
|
}
|
|
|
|
return DC_STATUS_SUCCESS;
|
|
}
|
|
|
|
static dc_status_t
|
|
citizen_aqualand_parser_samples_foreach (dc_parser_t *abstract, dc_sample_callback_t callback, void *userdata)
|
|
{
|
|
const unsigned char *data = abstract->data;
|
|
unsigned int size = abstract->size;
|
|
|
|
if (size < SZ_HEADER)
|
|
return DC_STATUS_DATAFORMAT;
|
|
|
|
// Estimate the maximum number of samples. We calculate the number of
|
|
// 12 bit values that fit in the available profile data, and round the
|
|
// result upwards. The actual number of samples should always be smaller
|
|
// due to the presence of at least two end markers.
|
|
unsigned int maxcount = (2 * (size - SZ_HEADER) + 2) / 3;
|
|
|
|
// Allocate storage for the processed 16 bit samples.
|
|
unsigned short *samples = (unsigned short *) malloc(maxcount * sizeof(unsigned short));
|
|
if (samples == NULL) {
|
|
return DC_STATUS_NOMEMORY;
|
|
}
|
|
|
|
// Pre-process the depth and temperature tables. The 12 bit BCD encoded
|
|
// values are converted into an array of 16 bit values, which is much
|
|
// more convenient to process in the second stage.
|
|
unsigned int nsamples = 0;
|
|
unsigned int count[2] = {0, 0};
|
|
unsigned int offset = SZ_HEADER * 2;
|
|
unsigned int length = size * 2;
|
|
for (unsigned int i = 0; i < 2; ++i) {
|
|
const unsigned int marker = (i == 0 ? 0xEF : 0xFF);
|
|
|
|
while (offset + 3 <= length) {
|
|
unsigned int value = 0;
|
|
unsigned int octet = offset / 2;
|
|
unsigned int nibble = offset % 2;
|
|
unsigned int hi = data[octet];
|
|
unsigned int lo = data[octet + 1];
|
|
|
|
// Check for the end marker.
|
|
if (hi == marker || lo == marker) {
|
|
offset += nibble;
|
|
break;
|
|
}
|
|
|
|
// Convert 12 bit BCD to decimal.
|
|
if (nibble) {
|
|
value = ((hi ) & 0x0F) * 100 +
|
|
((lo >> 4) & 0x0F) * 10 +
|
|
((lo ) & 0x0F);
|
|
} else {
|
|
value = ((hi >> 4) & 0x0F) * 100 +
|
|
((hi ) & 0x0F) * 10 +
|
|
((lo >> 4) & 0x0F);
|
|
}
|
|
|
|
// Store the value.
|
|
samples[nsamples] = value;
|
|
count[i]++;
|
|
nsamples++;
|
|
|
|
offset += 3;
|
|
}
|
|
|
|
// Verify the end marker.
|
|
if (offset + 2 > length || data[offset / 2] != marker) {
|
|
ERROR (abstract->context, "No end marker found.");
|
|
free(samples);
|
|
return DC_STATUS_DATAFORMAT;
|
|
}
|
|
|
|
offset += 2;
|
|
}
|
|
|
|
unsigned int time = 0;
|
|
unsigned int interval = 5;
|
|
unsigned int metric = (data[0x04] == 0xA6 ? 0 : 1);
|
|
for (unsigned int i = 0; i < count[0]; ++i) {
|
|
dc_sample_value_t sample = {0};
|
|
|
|
// Get the depth value.
|
|
unsigned int depth = samples[i];
|
|
|
|
// Every 12th sample there is a strange sample that always contains
|
|
// the value 999. This is clearly not a valid depth, but when trying
|
|
// to skip these samples, the depth and temperatures go out of sync.
|
|
// Therefore we replace the bogus sample with an interpolated value.
|
|
if (depth == 999) {
|
|
depth = 0;
|
|
if (i > 0) {
|
|
depth += samples[i - 1];
|
|
}
|
|
if (i < count[0] - 1) {
|
|
depth += samples[i + 1];
|
|
}
|
|
depth /= 2;
|
|
}
|
|
|
|
// Time
|
|
time += interval;
|
|
sample.time = time;
|
|
if (callback) callback (DC_SAMPLE_TIME, sample, userdata);
|
|
|
|
// Depth
|
|
if (metric)
|
|
sample.depth = depth / 10.0;
|
|
else
|
|
sample.depth = depth * FEET;
|
|
if (callback) callback (DC_SAMPLE_DEPTH, sample, userdata);
|
|
|
|
// Temperature
|
|
if (time % 300 == 0) {
|
|
unsigned int idx = count[0] + time / 300;
|
|
if (idx < nsamples) {
|
|
unsigned int temperature = samples[idx];
|
|
if (metric)
|
|
sample.temperature = temperature / 10.0;
|
|
else
|
|
sample.temperature = (temperature - 32.0) * (5.0 / 9.0);
|
|
if (callback) callback (DC_SAMPLE_TEMPERATURE, sample, userdata);
|
|
}
|
|
}
|
|
}
|
|
|
|
free(samples);
|
|
|
|
return DC_STATUS_SUCCESS;
|
|
}
|