libdc/src/suunto_common2.c
Jef Driesen 68380b2ec0 Fix some casts with constant pointers
Casting away the const qualifier generates a compiler warning which can
easily be avoided by preserving the const qualifier.
2017-11-24 23:45:11 +01:00

398 lines
12 KiB
C

/*
* libdivecomputer
*
* Copyright (C) 2009 Jef Driesen
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#include <stdlib.h> // malloc
#include <string.h> // memcmp, memcpy
#include <assert.h> // assert
#include "context-private.h"
#include "suunto_common2.h"
#include "ringbuffer.h"
#include "rbstream.h"
#include "checksum.h"
#include "array.h"
#define MAXRETRIES 2
#define SZ_VERSION 0x04
#define SZ_PACKET 0x78
#define SZ_MINIMUM 8
#define RB_PROFILE_DISTANCE(l,a,b,m) ringbuffer_distance (a, b, m, l->rb_profile_begin, l->rb_profile_end)
#define VTABLE(abstract) ((const suunto_common2_device_vtable_t *) abstract->vtable)
void
suunto_common2_device_init (suunto_common2_device_t *device)
{
assert (device != NULL);
// Set the default values.
device->layout = NULL;
memset (device->version, 0, sizeof (device->version));
memset (device->fingerprint, 0, sizeof (device->fingerprint));
}
static dc_status_t
suunto_common2_transfer (dc_device_t *abstract, const unsigned char command[], unsigned int csize, unsigned char answer[], unsigned int asize, unsigned int size)
{
assert (asize >= size + 4);
if (VTABLE (abstract)->packet == NULL)
return DC_STATUS_UNSUPPORTED;
// Occasionally, the dive computer does not respond to a command.
// In that case we retry the command a number of times before
// returning an error. Usually the dive computer will respond
// again during one of the retries.
unsigned int nretries = 0;
dc_status_t rc = DC_STATUS_SUCCESS;
while ((rc = VTABLE (abstract)->packet (abstract, command, csize, answer, asize, size)) != DC_STATUS_SUCCESS) {
// Automatically discard a corrupted packet,
// and request a new one.
if (rc != DC_STATUS_TIMEOUT && rc != DC_STATUS_PROTOCOL)
return rc;
// Abort if the maximum number of retries is reached.
if (nretries++ >= MAXRETRIES)
return rc;
}
return rc;
}
dc_status_t
suunto_common2_device_set_fingerprint (dc_device_t *abstract, const unsigned char data[], unsigned int size)
{
suunto_common2_device_t *device = (suunto_common2_device_t*) abstract;
if (size && size != sizeof (device->fingerprint))
return DC_STATUS_INVALIDARGS;
if (size)
memcpy (device->fingerprint, data, sizeof (device->fingerprint));
else
memset (device->fingerprint, 0, sizeof (device->fingerprint));
return DC_STATUS_SUCCESS;
}
dc_status_t
suunto_common2_device_version (dc_device_t *abstract, unsigned char data[], unsigned int size)
{
if (size < SZ_VERSION) {
ERROR (abstract->context, "Insufficient buffer space available.");
return DC_STATUS_INVALIDARGS;
}
unsigned char answer[SZ_VERSION + 4] = {0};
unsigned char command[4] = {0x0F, 0x00, 0x00, 0x0F};
dc_status_t rc = suunto_common2_transfer (abstract, command, sizeof (command), answer, sizeof (answer), 4);
if (rc != DC_STATUS_SUCCESS)
return rc;
memcpy (data, answer + 3, SZ_VERSION);
return DC_STATUS_SUCCESS;
}
dc_status_t
suunto_common2_device_reset_maxdepth (dc_device_t *abstract)
{
unsigned char answer[4] = {0};
unsigned char command[4] = {0x20, 0x00, 0x00, 0x20};
dc_status_t rc = suunto_common2_transfer (abstract, command, sizeof (command), answer, sizeof (answer), 0);
if (rc != DC_STATUS_SUCCESS)
return rc;
return DC_STATUS_SUCCESS;
}
dc_status_t
suunto_common2_device_read (dc_device_t *abstract, unsigned int address, unsigned char data[], unsigned int size)
{
unsigned int nbytes = 0;
while (nbytes < size) {
// Calculate the package size.
unsigned int len = size - nbytes;
if (len > SZ_PACKET)
len = SZ_PACKET;
// Read the package.
unsigned char answer[SZ_PACKET + 7] = {0};
unsigned char command[7] = {0x05, 0x00, 0x03,
(address >> 8) & 0xFF, // high
(address ) & 0xFF, // low
len, // count
0}; // CRC
command[6] = checksum_xor_uint8 (command, 6, 0x00);
dc_status_t rc = suunto_common2_transfer (abstract, command, sizeof (command), answer, len + 7, len);
if (rc != DC_STATUS_SUCCESS)
return rc;
memcpy (data, answer + 6, len);
nbytes += len;
address += len;
data += len;
}
return DC_STATUS_SUCCESS;
}
dc_status_t
suunto_common2_device_write (dc_device_t *abstract, unsigned int address, const unsigned char data[], unsigned int size)
{
unsigned int nbytes = 0;
while (nbytes < size) {
// Calculate the package size.
unsigned int len = size - nbytes;
if (len > SZ_PACKET)
len = SZ_PACKET;
// Write the package.
unsigned char answer[7] = {0};
unsigned char command[SZ_PACKET + 7] = {0x06, 0x00, len + 3,
(address >> 8) & 0xFF, // high
(address ) & 0xFF, // low
len, // count
0}; // data + CRC
memcpy (command + 6, data, len);
command[len + 6] = checksum_xor_uint8 (command, len + 6, 0x00);
dc_status_t rc = suunto_common2_transfer (abstract, command, len + 7, answer, sizeof (answer), 0);
if (rc != DC_STATUS_SUCCESS)
return rc;
nbytes += len;
address += len;
data += len;
}
return DC_STATUS_SUCCESS;
}
dc_status_t
suunto_common2_device_dump (dc_device_t *abstract, dc_buffer_t *buffer)
{
suunto_common2_device_t *device = (suunto_common2_device_t *) abstract;
assert (device != NULL);
assert (device->layout != NULL);
// Erase the current contents of the buffer and
// allocate the required amount of memory.
if (!dc_buffer_clear (buffer) || !dc_buffer_resize (buffer, device->layout->memsize)) {
ERROR (abstract->context, "Insufficient buffer space available.");
return DC_STATUS_NOMEMORY;
}
// Emit a vendor event.
dc_event_vendor_t vendor;
vendor.data = device->version;
vendor.size = sizeof (device->version);
device_event_emit (abstract, DC_EVENT_VENDOR, &vendor);
return device_dump_read (abstract, dc_buffer_get_data (buffer),
dc_buffer_get_size (buffer), SZ_PACKET);
}
dc_status_t
suunto_common2_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata)
{
suunto_common2_device_t *device = (suunto_common2_device_t*) abstract;
assert (device != NULL);
assert (device->layout != NULL);
const suunto_common2_layout_t *layout = device->layout;
// Error status for delayed errors.
dc_status_t status = DC_STATUS_SUCCESS;
// Enable progress notifications.
dc_event_progress_t progress = EVENT_PROGRESS_INITIALIZER;
progress.maximum = layout->rb_profile_end - layout->rb_profile_begin +
8 + (SZ_MINIMUM > 4 ? SZ_MINIMUM : 4);
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
// Emit a vendor event.
dc_event_vendor_t vendor;
vendor.data = device->version;
vendor.size = sizeof (device->version);
device_event_emit (abstract, DC_EVENT_VENDOR, &vendor);
// Read the serial number.
unsigned char serial[SZ_MINIMUM > 4 ? SZ_MINIMUM : 4] = {0};
dc_status_t rc = suunto_common2_device_read (abstract, layout->serial, serial, sizeof (serial));
if (rc != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to read the memory header.");
return rc;
}
// Update and emit a progress event.
progress.current += sizeof (serial);
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
// Emit a device info event.
dc_event_devinfo_t devinfo;
devinfo.model = device->version[0];
devinfo.firmware = array_uint24_be (device->version + 1);
devinfo.serial = 0;
for (unsigned int i = 0; i < 4; ++i) {
devinfo.serial *= 100;
devinfo.serial += serial[i];
}
device_event_emit (abstract, DC_EVENT_DEVINFO, &devinfo);
// Read the header bytes.
unsigned char header[8] = {0};
rc = suunto_common2_device_read (abstract, 0x0190, header, sizeof (header));
if (rc != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to read the memory header.");
return rc;
}
// Obtain the pointers from the header.
unsigned int last = array_uint16_le (header + 0);
unsigned int count = array_uint16_le (header + 2);
unsigned int end = array_uint16_le (header + 4);
unsigned int begin = array_uint16_le (header + 6);
if (last < layout->rb_profile_begin ||
last >= layout->rb_profile_end ||
end < layout->rb_profile_begin ||
end >= layout->rb_profile_end ||
begin < layout->rb_profile_begin ||
begin >= layout->rb_profile_end)
{
ERROR (abstract->context, "Invalid ringbuffer pointer detected (0x%04x 0x%04x 0x%04x %u).", begin, last, end, count);
return DC_STATUS_DATAFORMAT;
}
// Calculate the total amount of bytes.
unsigned int remaining = RB_PROFILE_DISTANCE (layout, begin, end, count != 0);
// Update and emit a progress event.
progress.maximum -= (layout->rb_profile_end - layout->rb_profile_begin) - remaining;
progress.current += sizeof (header);
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
// Create the ringbuffer stream.
dc_rbstream_t *rbstream = NULL;
rc = dc_rbstream_new (&rbstream, abstract, 1, SZ_PACKET, layout->rb_profile_begin, layout->rb_profile_end, end);
if (rc != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to create the ringbuffer stream.");
return rc;
}
// Memory buffer to store all the dives.
unsigned char *data = (unsigned char *) malloc (layout->rb_profile_end - layout->rb_profile_begin);
if (data == NULL) {
ERROR (abstract->context, "Failed to allocate memory.");
dc_rbstream_free (rbstream);
return DC_STATUS_NOMEMORY;
}
// The ring buffer is traversed backwards to retrieve the most recent
// dives first. This allows us to download only the new dives.
unsigned int current = last;
unsigned int previous = end;
unsigned int offset = remaining;
while (offset) {
// Calculate the size of the current dive.
unsigned int size = RB_PROFILE_DISTANCE (layout, current, previous, 1);
if (size < 4 || size > offset) {
ERROR (abstract->context, "Unexpected profile size (%u %u).", size, offset);
dc_rbstream_free (rbstream);
free (data);
return DC_STATUS_DATAFORMAT;
}
// Move to the begin of the current dive.
offset -= size;
// Read the dive.
rc = dc_rbstream_read (rbstream, &progress, data + offset, size);
if (rc != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to read the dive.");
dc_rbstream_free (rbstream);
free (data);
return rc;
}
unsigned char *p = data + offset;
unsigned int prev = array_uint16_le (p + 0);
unsigned int next = array_uint16_le (p + 2);
if (prev < layout->rb_profile_begin ||
prev >= layout->rb_profile_end ||
next < layout->rb_profile_begin ||
next >= layout->rb_profile_end)
{
ERROR (abstract->context, "Invalid ringbuffer pointer detected (0x%04x 0x%04x).", prev, next);
dc_rbstream_free (rbstream);
free (data);
return DC_STATUS_DATAFORMAT;
}
if (next != previous && next != current) {
ERROR (abstract->context, "Profiles are not continuous (0x%04x 0x%04x 0x%04x).", current, next, previous);
dc_rbstream_free (rbstream);
free (data);
return DC_STATUS_DATAFORMAT;
}
if (next != current) {
unsigned int fp_offset = layout->fingerprint + 4;
if (memcmp (p + fp_offset, device->fingerprint, sizeof (device->fingerprint)) == 0) {
dc_rbstream_free (rbstream);
free (data);
return DC_STATUS_SUCCESS;
}
if (callback && !callback (p + 4, size - 4, p + fp_offset, sizeof (device->fingerprint), userdata)) {
dc_rbstream_free (rbstream);
free (data);
return DC_STATUS_SUCCESS;
}
} else {
ERROR (abstract->context, "Skipping incomplete dive (0x%04x 0x%04x 0x%04x).", current, next, previous);
status = DC_STATUS_DATAFORMAT;
}
// Next dive.
previous = current;
current = prev;
}
dc_rbstream_free (rbstream);
free (data);
return status;
}