/* * libdivecomputer * * Copyright (C) 2011 Jef Driesen * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, * MA 02110-1301 USA */ #include #include #include #ifdef _MSC_VER #define snprintf _snprintf #endif #include #include "atomics_cobalt.h" #include "context-private.h" #include "parser-private.h" #include "array.h" #define ISINSTANCE(parser) dc_parser_isinstance((parser), &atomics_cobalt_parser_vtable) #define SZ_HEADER 228 #define SZ_GASMIX 18 #define SZ_GASSWITCH 6 #define SZ_SEGMENT 16 typedef struct atomics_cobalt_parser_t atomics_cobalt_parser_t; struct atomics_cobalt_parser_t { dc_parser_t base; // Depth calibration. double atmospheric; double hydrostatic; }; static dc_status_t atomics_cobalt_parser_set_data (dc_parser_t *abstract, const unsigned char *data, unsigned int size); static dc_status_t atomics_cobalt_parser_get_datetime (dc_parser_t *abstract, dc_datetime_t *datetime); static dc_status_t atomics_cobalt_parser_get_field (dc_parser_t *abstract, dc_field_type_t type, unsigned int flags, void *value); static dc_status_t atomics_cobalt_parser_samples_foreach (dc_parser_t *abstract, dc_sample_callback_t callback, void *userdata); static const dc_parser_vtable_t atomics_cobalt_parser_vtable = { sizeof(atomics_cobalt_parser_t), DC_FAMILY_ATOMICS_COBALT, atomics_cobalt_parser_set_data, /* set_data */ atomics_cobalt_parser_get_datetime, /* datetime */ atomics_cobalt_parser_get_field, /* fields */ atomics_cobalt_parser_samples_foreach, /* samples_foreach */ NULL /* destroy */ }; dc_status_t atomics_cobalt_parser_create (dc_parser_t **out, dc_context_t *context) { atomics_cobalt_parser_t *parser = NULL; if (out == NULL) return DC_STATUS_INVALIDARGS; // Allocate memory. parser = (atomics_cobalt_parser_t *) dc_parser_allocate (context, &atomics_cobalt_parser_vtable); if (parser == NULL) { ERROR (context, "Failed to allocate memory."); return DC_STATUS_NOMEMORY; } // Set the default values. parser->atmospheric = 0.0; parser->hydrostatic = 1025.0 * GRAVITY; *out = (dc_parser_t*) parser; return DC_STATUS_SUCCESS; } static dc_status_t atomics_cobalt_parser_set_data (dc_parser_t *abstract, const unsigned char *data, unsigned int size) { return DC_STATUS_SUCCESS; } dc_status_t atomics_cobalt_parser_set_calibration (dc_parser_t *abstract, double atmospheric, double hydrostatic) { atomics_cobalt_parser_t *parser = (atomics_cobalt_parser_t*) abstract; if (!ISINSTANCE (abstract)) return DC_STATUS_INVALIDARGS; parser->atmospheric = atmospheric; parser->hydrostatic = hydrostatic; return DC_STATUS_SUCCESS; } static dc_status_t atomics_cobalt_parser_get_datetime (dc_parser_t *abstract, dc_datetime_t *datetime) { if (abstract->size < SZ_HEADER) return DC_STATUS_DATAFORMAT; const unsigned char *p = abstract->data; if (datetime) { datetime->year = array_uint16_le (p + 0x14); datetime->month = p[0x16]; datetime->day = p[0x17]; datetime->hour = p[0x18]; datetime->minute = p[0x19]; datetime->second = 0; datetime->timezone = DC_TIMEZONE_NONE; } return DC_STATUS_SUCCESS; } #define BUFLEN 16 static dc_status_t atomics_cobalt_parser_get_field (dc_parser_t *abstract, dc_field_type_t type, unsigned int flags, void *value) { atomics_cobalt_parser_t *parser = (atomics_cobalt_parser_t *) abstract; if (abstract->size < SZ_HEADER) return DC_STATUS_DATAFORMAT; const unsigned char *p = abstract->data; dc_gasmix_t *gasmix = (dc_gasmix_t *) value; dc_tank_t *tank = (dc_tank_t *) value; double atmospheric = 0.0; char buf[BUFLEN]; dc_field_string_t *string = (dc_field_string_t *) value; if (parser->atmospheric) atmospheric = parser->atmospheric; else atmospheric = array_uint16_le (p + 0x26) * BAR / 1000.0; unsigned int workpressure = 0; if (value) { switch (type) { case DC_FIELD_DIVETIME: *((unsigned int *) value) = array_uint16_le (p + 0x58) * 60; break; case DC_FIELD_MAXDEPTH: *((double *) value) = (array_uint16_le (p + 0x56) * BAR / 1000.0 - atmospheric) / parser->hydrostatic; break; case DC_FIELD_GASMIX_COUNT: case DC_FIELD_TANK_COUNT: *((unsigned int *) value) = p[0x2a]; break; case DC_FIELD_GASMIX: gasmix->helium = p[SZ_HEADER + SZ_GASMIX * flags + 5] / 100.0; gasmix->oxygen = p[SZ_HEADER + SZ_GASMIX * flags + 4] / 100.0; gasmix->nitrogen = 1.0 - gasmix->oxygen - gasmix->helium; break; case DC_FIELD_TEMPERATURE_SURFACE: *((double *) value) = (p[0x1B] - 32.0) * (5.0 / 9.0); break; case DC_FIELD_TANK: p += SZ_HEADER + SZ_GASMIX * flags; switch (p[2]) { case 1: // Cuft at psi case 2: // Cuft at bar workpressure = array_uint16_le(p + 10); if (workpressure == 0) return DC_STATUS_DATAFORMAT; tank->type = DC_TANKVOLUME_IMPERIAL; tank->volume = array_uint16_le(p + 8) * CUFT * 1000.0; tank->volume /= workpressure * PSI / ATM; tank->workpressure = workpressure * PSI / BAR; break; case 3: // Wet volume in 1/10 liter tank->type = DC_TANKVOLUME_METRIC; tank->volume = array_uint16_le(p + 8) / 10.0; tank->workpressure = 0.0; break; default: return DC_STATUS_DATAFORMAT; } tank->gasmix = flags; tank->beginpressure = array_uint16_le(p + 6) * PSI / BAR; tank->endpressure = array_uint16_le(p + 14) * PSI / BAR; break; case DC_FIELD_DIVEMODE: switch(p[0x24]) { case 0: // Open Circuit Trimix case 2: // Open Circuit Nitrox *((dc_divemode_t *) value) = DC_DIVEMODE_OC; break; case 1: // Closed Circuit *((dc_divemode_t *) value) = DC_DIVEMODE_CCR; break; default: return DC_STATUS_DATAFORMAT; } break; case DC_FIELD_STRING: switch(flags) { case 0: // Serialnr string->desc = "Serial"; snprintf(buf, BUFLEN, "%c%c%c%c-%c%c%c%c", p[4], p[5], p[6], p[7], p[8], p[9], p[10], p[11]); break; case 1: // Program Version string->desc = "Program Version"; snprintf(buf, BUFLEN, "%.2f", array_uint16_le(p + 30) / 100.0); break; case 2: // Boot Version string->desc = "Boot Version"; snprintf(buf, BUFLEN, "%.2f", array_uint16_le(p + 32) / 100.0); break; case 3: // Nofly string->desc = "NoFly Time"; snprintf(buf, BUFLEN, "%0u:%02u", p[0x52], p[0x53]); break; default: return DC_STATUS_UNSUPPORTED; } string->value = strdup(buf); break; default: return DC_STATUS_UNSUPPORTED; } } return DC_STATUS_SUCCESS; } static dc_status_t atomics_cobalt_parser_samples_foreach (dc_parser_t *abstract, dc_sample_callback_t callback, void *userdata) { atomics_cobalt_parser_t *parser = (atomics_cobalt_parser_t *) abstract; const unsigned char *data = abstract->data; unsigned int size = abstract->size; if (size < SZ_HEADER) return DC_STATUS_DATAFORMAT; unsigned int interval = data[0x1a]; unsigned int ngasmixes = data[0x2a]; unsigned int nswitches = data[0x2b]; unsigned int nsegments = array_uint16_le (data + 0x50); unsigned int header = SZ_HEADER + SZ_GASMIX * ngasmixes + SZ_GASSWITCH * nswitches; if (size < header + SZ_SEGMENT * nsegments) return DC_STATUS_DATAFORMAT; double atmospheric = 0.0; if (parser->atmospheric) atmospheric = parser->atmospheric; else atmospheric = array_uint16_le (data + 0x26) * BAR / 1000.0; // Previous gas mix - initialize with impossible value unsigned int gasmix_previous = 0xFFFFFFFF; // Get the primary tank. unsigned int tank = 0; while (tank < ngasmixes) { unsigned int sensor = array_uint16_le(data + SZ_HEADER + SZ_GASMIX * tank + 12); if (sensor == 1) break; tank++; } if (tank >= ngasmixes) { ERROR (abstract->context, "Invalid primary tank index."); return DC_STATUS_DATAFORMAT; } unsigned int time = 0; unsigned int in_deco = 0; unsigned int offset = header; while (offset + SZ_SEGMENT <= size) { dc_sample_value_t sample = {0}; // Time (seconds). time += interval; sample.time = time; if (callback) callback (DC_SAMPLE_TIME, sample, userdata); // Depth (1/1000 bar). unsigned int depth = array_uint16_le (data + offset + 0); sample.depth = (depth * BAR / 1000.0 - atmospheric) / parser->hydrostatic; if (callback) callback (DC_SAMPLE_DEPTH, sample, userdata); // Pressure (1 psi). unsigned int pressure = array_uint16_le (data + offset + 2); sample.pressure.tank = tank; sample.pressure.value = pressure * PSI / BAR; if (callback) callback (DC_SAMPLE_PRESSURE, sample, userdata); // Current gas mix unsigned int gasmix = data[offset + 4]; if (gasmix != gasmix_previous) { unsigned int idx = 0; while (idx < ngasmixes) { if (data[SZ_HEADER + SZ_GASMIX * idx + 0] == gasmix) break; idx++; } if (idx >= ngasmixes) { ERROR (abstract->context, "Invalid gas mix index."); return DC_STATUS_DATAFORMAT; } sample.gasmix = idx; if (callback) callback (DC_SAMPLE_GASMIX, sample, userdata); gasmix_previous = gasmix; } // Temperature (1 °F). unsigned int temperature = data[offset + 8]; sample.temperature = (temperature - 32.0) * (5.0 / 9.0); if (callback) callback (DC_SAMPLE_TEMPERATURE, sample, userdata); // violation status sample.event.type = 0; sample.event.time = 0; sample.event.value = 0; sample.event.flags = 0; unsigned int violation = data[offset + 11]; if (violation & 0x01) { sample.event.type = SAMPLE_EVENT_ASCENT; if (callback) callback (DC_SAMPLE_EVENT, sample, userdata); } if (violation & 0x04) { sample.event.type = SAMPLE_EVENT_CEILING; if (callback) callback (DC_SAMPLE_EVENT, sample, userdata); } if (violation & 0x08) { sample.event.type = SAMPLE_EVENT_PO2; if (callback) callback (DC_SAMPLE_EVENT, sample, userdata); } // NDL & deco unsigned int ndl = data[offset + 5] * 60; if (ndl > 0) in_deco = 0; else if (ndl == 0 && (violation & 0x02)) in_deco = 1; if (in_deco) sample.deco.type = DC_DECO_DECOSTOP; else sample.deco.type = DC_DECO_NDL; sample.deco.time = ndl; sample.deco.depth = 0.0; if (callback) callback (DC_SAMPLE_DECO, sample, userdata); offset += SZ_SEGMENT; } return DC_STATUS_SUCCESS; }