/* * libdivecomputer * * Copyright (C) 2009 Jef Driesen * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, * MA 02110-1301 USA */ #include #include #include "oceanic_atom2.h" #include "oceanic_common.h" #include "context-private.h" #include "parser-private.h" #include "array.h" #define ISINSTANCE(parser) dc_parser_isinstance((parser), &oceanic_atom2_parser_vtable) #define ATOM1 0x4250 #define EPICA 0x4257 #define VT3 0x4258 #define T3A 0x4259 #define ATOM2 0x4342 #define GEO 0x4344 #define MANTA 0x4345 #define DATAMASK 0x4347 #define COMPUMASK 0x4348 #define OC1A 0x434E #define F10A 0x434D #define WISDOM2 0x4350 #define INSIGHT2 0x4353 #define ELEMENT2 0x4357 #define VEO20 0x4359 #define VEO30 0x435A #define ZEN 0x4441 #define ZENAIR 0x4442 #define ATMOSAI2 0x4443 #define PROPLUS21 0x4444 #define GEO20 0x4446 #define VT4 0x4447 #define OC1B 0x4449 #define VOYAGER2G 0x444B #define ATOM3 0x444C #define DG03 0x444D #define OCS 0x4450 #define OC1C 0x4451 #define VT41 0x4452 #define EPICB 0x4453 #define T3B 0x4455 #define ATOM31 0x4456 #define A300AI 0x4457 #define WISDOM3 0x4458 #define A300 0x445A #define TX1 0x4542 #define MUNDIAL2 0x4543 #define AMPHOS 0x4545 #define AMPHOSAIR 0x4546 #define PROPLUS3 0x4548 #define F11A 0x4549 #define OCI 0x454B #define A300CS 0x454C #define MUNDIAL3 0x4550 #define F10B 0x4553 #define F11B 0x4554 #define XPAIR 0x4555 #define VISION 0x4556 #define VTX 0x4557 #define I300 0x4559 #define I750TC 0x455A #define I450T 0x4641 #define I550 0x4642 #define I200 0x4646 #define NORMAL 0 #define GAUGE 1 #define FREEDIVE 2 #define NGASMIXES 6 #define HEADER 1 #define PROFILE 2 typedef struct oceanic_atom2_parser_t oceanic_atom2_parser_t; struct oceanic_atom2_parser_t { dc_parser_t base; unsigned int model; unsigned int headersize; unsigned int footersize; // Cached fields. unsigned int cached; unsigned int header; unsigned int footer; unsigned int mode; unsigned int ngasmixes; unsigned int oxygen[NGASMIXES]; unsigned int helium[NGASMIXES]; unsigned int divetime; double maxdepth; }; static dc_status_t oceanic_atom2_parser_set_data (dc_parser_t *abstract, const unsigned char *data, unsigned int size); static dc_status_t oceanic_atom2_parser_get_datetime (dc_parser_t *abstract, dc_datetime_t *datetime); static dc_status_t oceanic_atom2_parser_get_field (dc_parser_t *abstract, dc_field_type_t type, unsigned int flags, void *value); static dc_status_t oceanic_atom2_parser_samples_foreach (dc_parser_t *abstract, dc_sample_callback_t callback, void *userdata); static const dc_parser_vtable_t oceanic_atom2_parser_vtable = { sizeof(oceanic_atom2_parser_t), DC_FAMILY_OCEANIC_ATOM2, oceanic_atom2_parser_set_data, /* set_data */ oceanic_atom2_parser_get_datetime, /* datetime */ oceanic_atom2_parser_get_field, /* fields */ oceanic_atom2_parser_samples_foreach, /* samples_foreach */ NULL /* destroy */ }; dc_status_t oceanic_atom2_parser_create (dc_parser_t **out, dc_context_t *context, unsigned int model) { oceanic_atom2_parser_t *parser = NULL; if (out == NULL) return DC_STATUS_INVALIDARGS; // Allocate memory. parser = (oceanic_atom2_parser_t *) dc_parser_allocate (context, &oceanic_atom2_parser_vtable); if (parser == NULL) { ERROR (context, "Failed to allocate memory."); return DC_STATUS_NOMEMORY; } // Set the default values. parser->model = model; parser->headersize = 9 * PAGESIZE / 2; parser->footersize = 2 * PAGESIZE / 2; if (model == DATAMASK || model == COMPUMASK || model == GEO || model == GEO20 || model == VEO20 || model == VEO30 || model == OCS || model == PROPLUS3 || model == A300 || model == MANTA || model == INSIGHT2 || model == ZEN || model == I300 || model == I550 || model == I200) { parser->headersize -= PAGESIZE; } else if (model == VT4 || model == VT41) { parser->headersize += PAGESIZE; } else if (model == TX1) { parser->headersize += 2 * PAGESIZE; } else if (model == ATOM1) { parser->headersize -= 2 * PAGESIZE; } else if (model == F10A || model == F10B || model == MUNDIAL2 || model == MUNDIAL3) { parser->headersize = 3 * PAGESIZE; parser->footersize = 0; } else if (model == F11A || model == F11B) { parser->headersize = 5 * PAGESIZE; parser->footersize = 0; } else if (model == A300CS || model == VTX || model == I450T || model == I750TC) { parser->headersize = 5 * PAGESIZE; } parser->cached = 0; parser->header = 0; parser->footer = 0; parser->mode = NORMAL; parser->ngasmixes = 0; for (unsigned int i = 0; i < NGASMIXES; ++i) { parser->oxygen[i] = 0; parser->helium[i] = 0; } parser->divetime = 0; parser->maxdepth = 0.0; *out = (dc_parser_t*) parser; return DC_STATUS_SUCCESS; } static dc_status_t oceanic_atom2_parser_set_data (dc_parser_t *abstract, const unsigned char *data, unsigned int size) { oceanic_atom2_parser_t *parser = (oceanic_atom2_parser_t *) abstract; // Reset the cache. parser->cached = 0; parser->header = 0; parser->footer = 0; parser->mode = NORMAL; parser->ngasmixes = 0; for (unsigned int i = 0; i < NGASMIXES; ++i) { parser->oxygen[i] = 0; parser->helium[i] = 0; } parser->divetime = 0; parser->maxdepth = 0.0; return DC_STATUS_SUCCESS; } static dc_status_t oceanic_atom2_parser_get_datetime (dc_parser_t *abstract, dc_datetime_t *datetime) { oceanic_atom2_parser_t *parser = (oceanic_atom2_parser_t *) abstract; unsigned int header = 8; if (parser->model == F10A || parser->model == F10B || parser->model == F11A || parser->model == F11B || parser->model == MUNDIAL2 || parser->model == MUNDIAL3) header = 32; if (abstract->size < header) return DC_STATUS_DATAFORMAT; const unsigned char *p = abstract->data; if (datetime) { // AM/PM bit of the 12-hour clock. unsigned int pm = p[1] & 0x80; switch (parser->model) { case OC1A: case OC1B: case OC1C: case OCS: case VT4: case VT41: case ATOM3: case ATOM31: case A300AI: case OCI: case I550: case VISION: case XPAIR: datetime->year = ((p[5] & 0xE0) >> 5) + ((p[7] & 0xE0) >> 2) + 2000; datetime->month = (p[3] & 0x0F); datetime->day = ((p[0] & 0x80) >> 3) + ((p[3] & 0xF0) >> 4); datetime->hour = bcd2dec (p[1] & 0x1F); datetime->minute = bcd2dec (p[0] & 0x7F); break; case VT3: case VEO20: case VEO30: case DG03: case T3A: case T3B: case GEO20: case PROPLUS3: case DATAMASK: case COMPUMASK: case INSIGHT2: case I300: case I200: datetime->year = ((p[3] & 0xE0) >> 1) + (p[4] & 0x0F) + 2000; datetime->month = (p[4] & 0xF0) >> 4; datetime->day = p[3] & 0x1F; datetime->hour = bcd2dec (p[1] & 0x1F); datetime->minute = bcd2dec (p[0]); break; case ZENAIR: case AMPHOS: case AMPHOSAIR: case VOYAGER2G: datetime->year = (p[3] & 0x1F) + 2000; datetime->month = (p[7] & 0xF0) >> 4; datetime->day = ((p[3] & 0x80) >> 3) + ((p[5] & 0xF0) >> 4); datetime->hour = bcd2dec (p[1] & 0x1F); datetime->minute = bcd2dec (p[0]); break; case F10A: case F10B: case F11A: case F11B: case MUNDIAL2: case MUNDIAL3: datetime->year = bcd2dec (p[6]) + 2000; datetime->month = bcd2dec (p[7]); datetime->day = bcd2dec (p[8]); datetime->hour = bcd2dec (p[13] & 0x7F); datetime->minute = bcd2dec (p[12]); pm = p[13] & 0x80; break; case TX1: datetime->year = bcd2dec (p[13]) + 2000; datetime->month = bcd2dec (p[14]); datetime->day = bcd2dec (p[15]); datetime->hour = p[11]; datetime->minute = p[10]; break; case A300CS: case VTX: case I450T: case I750TC: datetime->year = (p[10]) + 2000; datetime->month = (p[8]); datetime->day = (p[9]); datetime->hour = bcd2dec(p[1] & 0x1F); datetime->minute = bcd2dec(p[0]); break; default: datetime->year = bcd2dec (((p[3] & 0xC0) >> 2) + (p[4] & 0x0F)) + 2000; datetime->month = (p[4] & 0xF0) >> 4; datetime->day = bcd2dec (p[3] & 0x3F); datetime->hour = bcd2dec (p[1] & 0x1F); datetime->minute = bcd2dec (p[0]); break; } datetime->second = 0; datetime->timezone = DC_TIMEZONE_NONE; // Convert to a 24-hour clock. datetime->hour %= 12; if (pm) datetime->hour += 12; /* * Workaround for the year 2010 problem. * * In theory there are more than enough bits available to store years * past 2010. Unfortunately some models do not use all those bits and * store only the last digit of the year. We try to guess the missing * information based on the current year. This should work in most * cases, except when the dive is more than 10 years old or in the * future (due to an incorrect clock on the device or the host system). * * Note that we are careful not to apply any guessing when the year is * actually stored with more bits. We don't want the code to break when * a firmware update fixes this bug. */ if (datetime->year < 2010) { // Retrieve the current year. dc_datetime_t now = {0}; if (dc_datetime_localtime (&now, dc_datetime_now ()) && now.year >= 2010) { // Guess the correct decade. int decade = (now.year / 10) * 10; if (datetime->year % 10 > now.year % 10) decade -= 10; /* Force back to the previous decade. */ // Adjust the year. datetime->year += decade - 2000; } } } return DC_STATUS_SUCCESS; } static dc_status_t oceanic_atom2_parser_cache (oceanic_atom2_parser_t *parser) { const unsigned char *data = parser->base.data; unsigned int size = parser->base.size; if (parser->cached) { return DC_STATUS_SUCCESS; } // Get the total amount of bytes before and after the profile data. unsigned int headersize = parser->headersize; unsigned int footersize = parser->footersize; if (size < headersize + footersize) return DC_STATUS_DATAFORMAT; // Get the offset to the header and footer sample. unsigned int header = headersize - PAGESIZE / 2; unsigned int footer = size - footersize; if (parser->model == VT4 || parser->model == VT41 || parser->model == A300AI || parser->model == VISION || parser->model == XPAIR) { header = 3 * PAGESIZE; } // Get the dive mode. unsigned int mode = NORMAL; if (parser->model == F10A || parser->model == F10B || parser->model == F11A || parser->model == F11B || parser->model == MUNDIAL2 || parser->model == MUNDIAL3) { mode = FREEDIVE; } else if (parser->model == T3B || parser->model == VT3 || parser->model == DG03) { mode = (data[2] & 0xC0) >> 6; } else if (parser->model == VEO20 || parser->model == VEO30 || parser->model == OCS) { mode = (data[1] & 0x60) >> 5; } // Get the gas mixes. unsigned int ngasmixes = 0; unsigned int o2_offset = 0; unsigned int he_offset = 0; if (mode == FREEDIVE) { ngasmixes = 0; } else if (parser->model == DATAMASK || parser->model == COMPUMASK) { ngasmixes = 1; o2_offset = header + 3; } else if (parser->model == VT4 || parser->model == VT41 || parser->model == A300AI || parser->model == VISION || parser->model == XPAIR) { o2_offset = header + 4; ngasmixes = 4; } else if (parser->model == OCI) { o2_offset = 0x28; ngasmixes = 4; } else if (parser->model == TX1) { o2_offset = 0x3E; he_offset = 0x48; ngasmixes = 6; } else if (parser->model == A300CS || parser->model == VTX || parser->model == I750TC) { o2_offset = 0x2A; if (data[0x39] & 0x04) { ngasmixes = 1; } else if (data[0x39] & 0x08) { ngasmixes = 2; } else if (data[0x39] & 0x10) { ngasmixes = 3; } else { ngasmixes = 4; } } else if (parser->model == I450T) { o2_offset = 0x30; ngasmixes = 3; } else if (parser->model == ZEN) { o2_offset = header + 4; ngasmixes = 2; } else { o2_offset = header + 4; ngasmixes = 3; } // Cache the data for later use. parser->header = header; parser->footer = footer; parser->mode = mode; parser->ngasmixes = ngasmixes; for (unsigned int i = 0; i < ngasmixes; ++i) { if (data[o2_offset + i]) { parser->oxygen[i] = data[o2_offset + i]; } else { parser->oxygen[i] = 21; } if (he_offset) { parser->helium[i] = data[he_offset + i]; } else { parser->helium[i] = 0; } } parser->cached = HEADER; return DC_STATUS_SUCCESS; } static dc_status_t oceanic_atom2_parser_get_field (dc_parser_t *abstract, dc_field_type_t type, unsigned int flags, void *value) { dc_status_t status = DC_STATUS_SUCCESS; oceanic_atom2_parser_t *parser = (oceanic_atom2_parser_t *) abstract; const unsigned char *data = abstract->data; unsigned int size = abstract->size; // Cache the header data. status = oceanic_atom2_parser_cache (parser); if (status != DC_STATUS_SUCCESS) return status; // Cache the profile data. if (parser->cached < PROFILE) { sample_statistics_t statistics = SAMPLE_STATISTICS_INITIALIZER; status = oceanic_atom2_parser_samples_foreach ( abstract, sample_statistics_cb, &statistics); if (status != DC_STATUS_SUCCESS) return status; parser->cached = PROFILE; parser->divetime = statistics.divetime; parser->maxdepth = statistics.maxdepth; } dc_gasmix_t *gasmix = (dc_gasmix_t *) value; dc_salinity_t *water = (dc_salinity_t *) value; if (value) { switch (type) { case DC_FIELD_DIVETIME: if (parser->model == F10A || parser->model == F10B || parser->model == F11A || parser->model == F11B || parser->model == MUNDIAL2 || parser->model == MUNDIAL3) *((unsigned int *) value) = bcd2dec (data[2]) + bcd2dec (data[3]) * 60; else *((unsigned int *) value) = parser->divetime; break; case DC_FIELD_MAXDEPTH: if (parser->model == F10A || parser->model == F10B || parser->model == F11A || parser->model == F11B || parser->model == MUNDIAL2 || parser->model == MUNDIAL3) *((double *) value) = array_uint16_le (data + 4) / 16.0 * FEET; else *((double *) value) = (array_uint16_le (data + parser->footer + 4) & 0x0FFF) / 16.0 * FEET; break; case DC_FIELD_GASMIX_COUNT: *((unsigned int *) value) = parser->ngasmixes; break; case DC_FIELD_GASMIX: gasmix->oxygen = parser->oxygen[flags] / 100.0; gasmix->helium = parser->helium[flags] / 100.0; gasmix->nitrogen = 1.0 - gasmix->oxygen - gasmix->helium; break; case DC_FIELD_SALINITY: if (parser->model == A300CS || parser->model == VTX || parser->model == I750TC) { if (data[0x18] & 0x80) { water->type = DC_WATER_FRESH; } else { water->type = DC_WATER_SALT; } water->density = 0.0; } else { return DC_STATUS_UNSUPPORTED; } break; case DC_FIELD_DIVEMODE: switch (parser->mode) { case NORMAL: *((unsigned int *) value) = DC_DIVEMODE_OC; break; case GAUGE: *((unsigned int *) value) = DC_DIVEMODE_GAUGE; break; case FREEDIVE: *((unsigned int *) value) = DC_DIVEMODE_FREEDIVE; break; default: return DC_STATUS_DATAFORMAT; } break; default: return DC_STATUS_UNSUPPORTED; } } return DC_STATUS_SUCCESS; } static void oceanic_atom2_parser_vendor (oceanic_atom2_parser_t *parser, const unsigned char *data, unsigned int size, unsigned int samplesize, dc_sample_callback_t callback, void *userdata) { unsigned int offset = 0; while (offset + samplesize <= size) { dc_sample_value_t sample = {0}; // Ignore empty samples. if ((parser->mode != FREEDIVE && array_isequal (data + offset, samplesize, 0x00)) || array_isequal (data + offset, samplesize, 0xFF)) { offset += samplesize; continue; } // Get the sample type. unsigned int sampletype = data[offset + 0]; if (parser->mode == FREEDIVE) sampletype = 0; // Get the sample size. unsigned int length = samplesize; if (sampletype == 0xBB) { length = PAGESIZE; } // Vendor specific data sample.vendor.type = SAMPLE_VENDOR_OCEANIC_ATOM2; sample.vendor.size = length; sample.vendor.data = data + offset; if (callback) callback (DC_SAMPLE_VENDOR, sample, userdata); offset += length; } } static dc_status_t oceanic_atom2_parser_samples_foreach (dc_parser_t *abstract, dc_sample_callback_t callback, void *userdata) { dc_status_t status = DC_STATUS_SUCCESS; oceanic_atom2_parser_t *parser = (oceanic_atom2_parser_t *) abstract; const unsigned char *data = abstract->data; unsigned int size = abstract->size; // Cache the header data. status = oceanic_atom2_parser_cache (parser); if (status != DC_STATUS_SUCCESS) return status; unsigned int extratime = 0; unsigned int time = 0; unsigned int interval = 1; unsigned int samplerate = 1; if (parser->mode != FREEDIVE) { unsigned int idx = 0x17; if (parser->model == A300CS || parser->model == VTX || parser->model == I450T || parser->model == I750TC) idx = 0x1f; switch (data[idx] & 0x03) { case 0: interval = 2; break; case 1: interval = 15; break; case 2: interval = 30; break; case 3: interval = 60; break; } } else if (parser->model == F11A || parser->model == F11B) { unsigned int idx = 0x29; switch (data[idx] & 0x03) { case 0: interval = 1; samplerate = 4; break; case 1: interval = 1; samplerate = 2; break; case 2: interval = 1; break; case 3: interval = 2; break; } if (samplerate > 1) { // Some models supports multiple samples per second. // Since our smallest unit of time is one second, we can't // represent this, and the extra samples will get dropped. WARNING(abstract->context, "Multiple samples per second are not supported!"); } } unsigned int samplesize = PAGESIZE / 2; if (parser->mode == FREEDIVE) { if (parser->model == F10A || parser->model == F10B || parser->model == F11A || parser->model == F11B || parser->model == MUNDIAL2 || parser->model == MUNDIAL3) { samplesize = 2; } else { samplesize = 4; } } else if (parser->model == OC1A || parser->model == OC1B || parser->model == OC1C || parser->model == OCI || parser->model == TX1 || parser->model == A300CS || parser->model == VTX || parser->model == I450T || parser->model == I750TC) { samplesize = PAGESIZE; } unsigned int have_temperature = 1, have_pressure = 1; if (parser->mode == FREEDIVE) { have_temperature = 0; have_pressure = 0; } else if (parser->model == VEO30 || parser->model == OCS || parser->model == ELEMENT2 || parser->model == VEO20 || parser->model == A300 || parser->model == ZEN || parser->model == GEO || parser->model == GEO20 || parser->model == MANTA || parser->model == I300 || parser->model == I200) { have_pressure = 0; } // Initial temperature. unsigned int temperature = 0; if (have_temperature) { temperature = data[parser->header + 7]; } // Initial tank pressure. unsigned int tank = 0; unsigned int pressure = 0; if (have_pressure) { unsigned int idx = 2; if (parser->model == A300CS || parser->model == VTX || parser->model == I750TC) idx = 16; pressure = array_uint16_le(data + parser->header + idx); if (pressure == 10000) have_pressure = 0; } // Initial gas mix. unsigned int gasmix_previous = 0xFFFFFFFF; unsigned int count = 0; unsigned int complete = 1; unsigned int previous = 0; unsigned int offset = parser->headersize; while (offset + samplesize <= size - parser->footersize) { dc_sample_value_t sample = {0}; // Ignore empty samples. if ((parser->mode != FREEDIVE && array_isequal (data + offset, samplesize, 0x00)) || array_isequal (data + offset, samplesize, 0xFF)) { offset += samplesize; continue; } if (complete) { previous = offset; complete = 0; } // Get the sample type. unsigned int sampletype = data[offset + 0]; if (parser->mode == FREEDIVE) sampletype = 0; // The sample size is usually fixed, but some sample types have a // larger size. Check whether we have that many bytes available. unsigned int length = samplesize; if (sampletype == 0xBB) { length = PAGESIZE; if (offset + length > size - parser->footersize) { ERROR (abstract->context, "Buffer overflow detected!"); return DC_STATUS_DATAFORMAT; } } // Check for a tank switch sample. if (sampletype == 0xAA) { if (parser->model == DATAMASK || parser->model == COMPUMASK) { // Tank pressure (1 psi) and number tank = 0; pressure = (((data[offset + 7] << 8) + data[offset + 6]) & 0x0FFF); } else if (parser->model == A300CS || parser->model == VTX || parser->model == I750TC) { // Tank pressure (1 psi) and number (one based index) tank = (data[offset + 1] & 0x03) - 1; pressure = ((data[offset + 7] << 8) + data[offset + 6]) & 0x0FFF; } else { // Tank pressure (2 psi) and number (one based index) tank = (data[offset + 1] & 0x03) - 1; if (parser->model == ATOM2 || parser->model == EPICA || parser->model == EPICB) pressure = (((data[offset + 3] << 8) + data[offset + 4]) & 0x0FFF) * 2; else pressure = (((data[offset + 4] << 8) + data[offset + 5]) & 0x0FFF) * 2; } } else if (sampletype == 0xBB) { // The surface time is not always a nice multiple of the samplerate. // The number of inserted surface samples is therefore rounded down // to keep the timestamps aligned at multiples of the samplerate. unsigned int surftime = 60 * bcd2dec (data[offset + 1]) + bcd2dec (data[offset + 2]); unsigned int nsamples = surftime / interval; for (unsigned int i = 0; i < nsamples; ++i) { // Time time += interval; sample.time = time; if (callback) callback (DC_SAMPLE_TIME, sample, userdata); // Vendor specific data if (i == 0) { oceanic_atom2_parser_vendor (parser, data + previous, (offset - previous) + length, samplesize, callback, userdata); } // Depth sample.depth = 0.0; if (callback) callback (DC_SAMPLE_DEPTH, sample, userdata); complete = 1; } extratime += surftime; } else { // Skip the extra samples. if ((count % samplerate) != 0) { offset += samplesize; count++; continue; } // Time. if (parser->model == I450T) { unsigned int minute = bcd2dec(data[offset + 0]); unsigned int hour = bcd2dec(data[offset + 1] & 0x0F); unsigned int second = bcd2dec(data[offset + 2]); unsigned int timestamp = (hour * 3600) + (minute * 60 ) + second + extratime; if (timestamp < time) { ERROR (abstract->context, "Timestamp moved backwards."); return DC_STATUS_DATAFORMAT; } else if (timestamp == time) { WARNING (abstract->context, "Unexpected sample with the same timestamp ignored."); offset += length; continue; } time = timestamp; } else { time += interval; } sample.time = time; if (callback) callback (DC_SAMPLE_TIME, sample, userdata); // Vendor specific data oceanic_atom2_parser_vendor (parser, data + previous, (offset - previous) + length, samplesize, callback, userdata); // Temperature (°F) if (have_temperature) { if (parser->model == GEO || parser->model == ATOM1 || parser->model == ELEMENT2 || parser->model == MANTA || parser->model == ZEN) { temperature = data[offset + 6]; } else if (parser->model == GEO20 || parser->model == VEO20 || parser->model == VEO30 || parser->model == OC1A || parser->model == OC1B || parser->model == OC1C || parser->model == OCI || parser->model == A300 || parser->model == I450T || parser->model == I300 || parser->model == I200) { temperature = data[offset + 3]; } else if (parser->model == OCS || parser->model == TX1) { temperature = data[offset + 1]; } else if (parser->model == VT4 || parser->model == VT41 || parser->model == ATOM3 || parser->model == ATOM31 || parser->model == A300AI || parser->model == VISION || parser->model == XPAIR) { temperature = ((data[offset + 7] & 0xF0) >> 4) | ((data[offset + 7] & 0x0C) << 2) | ((data[offset + 5] & 0x0C) << 4); } else if (parser->model == A300CS || parser->model == VTX || parser->model == I750TC) { temperature = data[offset + 11]; } else { unsigned int sign; if (parser->model == DG03 || parser->model == PROPLUS3 || parser->model == I550) sign = (~data[offset + 5] & 0x04) >> 2; else if (parser->model == VOYAGER2G || parser->model == AMPHOS || parser->model == AMPHOSAIR || parser->model == ZENAIR) sign = (data[offset + 5] & 0x04) >> 2; else if (parser->model == ATOM2 || parser->model == PROPLUS21 || parser->model == EPICA || parser->model == EPICB || parser->model == ATMOSAI2 || parser->model == WISDOM2 || parser->model == WISDOM3) sign = (data[offset + 0] & 0x80) >> 7; else sign = (~data[offset + 0] & 0x80) >> 7; if (sign) temperature -= (data[offset + 7] & 0x0C) >> 2; else temperature += (data[offset + 7] & 0x0C) >> 2; } sample.temperature = (temperature - 32.0) * (5.0 / 9.0); if (callback) callback (DC_SAMPLE_TEMPERATURE, sample, userdata); } // Tank Pressure (psi) if (have_pressure) { if (parser->model == OC1A || parser->model == OC1B || parser->model == OC1C || parser->model == OCI || parser->model == I450T) pressure = (data[offset + 10] + (data[offset + 11] << 8)) & 0x0FFF; else if (parser->model == VT4 || parser->model == VT41|| parser->model == ATOM3 || parser->model == ATOM31 || parser->model == ZENAIR ||parser->model == A300AI || parser->model == DG03 || parser->model == PROPLUS3 || parser->model == AMPHOSAIR || parser->model == I550 || parser->model == VISION || parser->model == XPAIR) pressure = (((data[offset + 0] & 0x03) << 8) + data[offset + 1]) * 5; else if (parser->model == TX1 || parser->model == A300CS || parser->model == VTX || parser->model == I750TC) pressure = array_uint16_le (data + offset + 4); else pressure -= data[offset + 1]; sample.pressure.tank = tank; sample.pressure.value = pressure * PSI / BAR; if (callback) callback (DC_SAMPLE_PRESSURE, sample, userdata); } // Depth (1/16 ft) unsigned int depth; if (parser->mode == FREEDIVE) depth = array_uint16_le (data + offset); else if (parser->model == GEO20 || parser->model == VEO20 || parser->model == VEO30 || parser->model == OC1A || parser->model == OC1B || parser->model == OC1C || parser->model == OCI || parser->model == A300 || parser->model == I450T || parser->model == I300 || parser->model == I200) depth = (data[offset + 4] + (data[offset + 5] << 8)) & 0x0FFF; else if (parser->model == ATOM1) depth = data[offset + 3] * 16; else depth = (data[offset + 2] + (data[offset + 3] << 8)) & 0x0FFF; sample.depth = depth / 16.0 * FEET; if (callback) callback (DC_SAMPLE_DEPTH, sample, userdata); // Gas mix unsigned int have_gasmix = 0; unsigned int gasmix = 0; if (parser->model == TX1) { gasmix = data[offset] & 0x07; have_gasmix = 1; } if (have_gasmix && gasmix != gasmix_previous) { if (gasmix < 1 || gasmix > parser->ngasmixes) { ERROR (abstract->context, "Invalid gas mix index (%u).", gasmix); return DC_STATUS_DATAFORMAT; } sample.gasmix = gasmix - 1; if (callback) callback (DC_SAMPLE_GASMIX, sample, userdata); gasmix_previous = gasmix; } // NDL / Deco unsigned int have_deco = 0; unsigned int decostop = 0, decotime = 0; if (parser->model == A300CS || parser->model == VTX || parser->model == I450T || parser->model == I750TC) { decostop = (data[offset + 15] & 0x70) >> 4; decotime = array_uint16_le(data + offset + 6) & 0x03FF; have_deco = 1; } else if (parser->model == ZEN || parser->model == DG03) { decostop = (data[offset + 5] & 0xF0) >> 4; decotime = array_uint16_le(data + offset + 4) & 0x0FFF; have_deco = 1; } else if (parser->model == TX1) { decostop = data[offset + 10]; decotime = array_uint16_le(data + offset + 6); have_deco = 1; } else if (parser->model == ATOM31 || parser->model == VISION || parser->model == XPAIR || parser->model == I550) { decostop = (data[offset + 5] & 0xF0) >> 4; decotime = array_uint16_le(data + offset + 4) & 0x03FF; have_deco = 1; } else if (parser->model == I200 || parser->model == I300 || parser->model == OC1A || parser->model == OC1B || parser->model == OC1C || parser->model == OCI) { decostop = (data[offset + 7] & 0xF0) >> 4; decotime = array_uint16_le(data + offset + 6) & 0x0FFF; have_deco = 1; } if (have_deco) { if (decostop) { sample.deco.type = DC_DECO_DECOSTOP; sample.deco.depth = decostop * 10 * FEET; } else { sample.deco.type = DC_DECO_NDL; sample.deco.depth = 0.0; } sample.deco.time = decotime * 60; if (callback) callback (DC_SAMPLE_DECO, sample, userdata); } unsigned int have_rbt = 0; unsigned int rbt = 0; if (parser->model == ATOM31) { rbt = array_uint16_le(data + offset + 6) & 0x01FF; have_rbt = 1; } else if (parser->model == I450T || parser->model == OC1A || parser->model == OC1B || parser->model == OC1C || parser->model == OCI) { rbt = array_uint16_le(data + offset + 8) & 0x01FF; have_rbt = 1; } else if (parser->model == VISION || parser->model == XPAIR || parser->model == I550) { rbt = array_uint16_le(data + offset + 6) & 0x03FF; have_rbt = 1; } if (have_rbt) { sample.rbt = rbt; if (callback) callback (DC_SAMPLE_RBT, sample, userdata); } // Bookmarks unsigned int have_bookmark = 0; if (parser->model == OC1A || parser->model == OC1B || parser->model == OC1C || parser->model == OCI) { have_bookmark = data[offset + 12] & 0x80; } if (have_bookmark) { sample.event.type = SAMPLE_EVENT_BOOKMARK; sample.event.time = 0; sample.event.flags = 0; sample.event.value = 0; if (callback) callback (DC_SAMPLE_EVENT, sample, userdata); } count++; complete = 1; } offset += length; } return DC_STATUS_SUCCESS; }