/* * libdivecomputer * * Copyright (C) 2009 Jef Driesen * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, * MA 02110-1301 USA */ #include #include "oceanic_atom2.h" #include "oceanic_common.h" #include "parser-private.h" #include "array.h" #include "units.h" #include "utils.h" #define ATOM1 0x4250 #define EPIC 0x4257 #define VT3 0x4258 #define T3 0x4259 #define ATOM2 0x4342 #define GEO 0x4344 #define DATAMASK 0x4347 #define COMPUMASK 0x4348 #define OC1A 0x434E #define VEO20 0x4359 #define VEO30 0x435A #define ZENAIR 0x4442 #define PROPLUS21 0x4444 #define GEO20 0x4446 #define VT4 0x4447 #define OC1B 0x4449 #define ATOM3 0x444C #define VT41 0x4452 #define ATOM31 0x4456 typedef struct oceanic_atom2_parser_t oceanic_atom2_parser_t; struct oceanic_atom2_parser_t { parser_t base; unsigned int model; // Cached fields. unsigned int cached; unsigned int divetime; double maxdepth; }; static parser_status_t oceanic_atom2_parser_set_data (parser_t *abstract, const unsigned char *data, unsigned int size); static parser_status_t oceanic_atom2_parser_get_datetime (parser_t *abstract, dc_datetime_t *datetime); static parser_status_t oceanic_atom2_parser_get_field (parser_t *abstract, parser_field_type_t type, unsigned int flags, void *value); static parser_status_t oceanic_atom2_parser_samples_foreach (parser_t *abstract, sample_callback_t callback, void *userdata); static parser_status_t oceanic_atom2_parser_destroy (parser_t *abstract); static const parser_backend_t oceanic_atom2_parser_backend = { PARSER_TYPE_OCEANIC_ATOM2, oceanic_atom2_parser_set_data, /* set_data */ oceanic_atom2_parser_get_datetime, /* datetime */ oceanic_atom2_parser_get_field, /* fields */ oceanic_atom2_parser_samples_foreach, /* samples_foreach */ oceanic_atom2_parser_destroy /* destroy */ }; static int parser_is_oceanic_atom2 (parser_t *abstract) { if (abstract == NULL) return 0; return abstract->backend == &oceanic_atom2_parser_backend; } parser_status_t oceanic_atom2_parser_create (parser_t **out, unsigned int model) { if (out == NULL) return PARSER_STATUS_ERROR; // Allocate memory. oceanic_atom2_parser_t *parser = (oceanic_atom2_parser_t *) malloc (sizeof (oceanic_atom2_parser_t)); if (parser == NULL) { WARNING ("Failed to allocate memory."); return PARSER_STATUS_MEMORY; } // Initialize the base class. parser_init (&parser->base, &oceanic_atom2_parser_backend); // Set the default values. parser->model = model; parser->cached = 0; parser->divetime = 0; parser->maxdepth = 0.0; *out = (parser_t*) parser; return PARSER_STATUS_SUCCESS; } static parser_status_t oceanic_atom2_parser_destroy (parser_t *abstract) { if (! parser_is_oceanic_atom2 (abstract)) return PARSER_STATUS_TYPE_MISMATCH; // Free memory. free (abstract); return PARSER_STATUS_SUCCESS; } static parser_status_t oceanic_atom2_parser_set_data (parser_t *abstract, const unsigned char *data, unsigned int size) { oceanic_atom2_parser_t *parser = (oceanic_atom2_parser_t *) abstract; if (! parser_is_oceanic_atom2 (abstract)) return PARSER_STATUS_TYPE_MISMATCH; // Reset the cache. parser->cached = 0; parser->divetime = 0; parser->maxdepth = 0.0; return PARSER_STATUS_SUCCESS; } static parser_status_t oceanic_atom2_parser_get_datetime (parser_t *abstract, dc_datetime_t *datetime) { oceanic_atom2_parser_t *parser = (oceanic_atom2_parser_t *) abstract; if (abstract->size < 8) return PARSER_STATUS_ERROR; const unsigned char *p = abstract->data; if (datetime) { switch (parser->model) { case OC1A: case OC1B: case VT4: case VT41: case ATOM3: case ATOM31: datetime->year = ((p[5] & 0xE0) >> 5) + ((p[7] & 0xE0) >> 2) + 2000; datetime->month = (p[3] & 0x0F); datetime->day = ((p[0] & 0x80) >> 3) + ((p[3] & 0xF0) >> 4); datetime->hour = bcd2dec (p[1] & 0x1F); datetime->minute = bcd2dec (p[0] & 0x7F); break; case VT3: case VEO20: case GEO20: datetime->year = ((p[3] & 0xE0) >> 1) + (p[4] & 0x0F) + 2000; datetime->month = (p[4] & 0xF0) >> 4; datetime->day = p[3] & 0x1F; datetime->hour = bcd2dec (p[1] & 0x7F); datetime->minute = bcd2dec (p[0]); break; case ZENAIR: datetime->year = (p[3] & 0x0F) + 2000; datetime->month = (p[7] & 0xF0) >> 4; datetime->day = ((p[3] & 0x80) >> 3) + ((p[5] & 0xF0) >> 4); datetime->hour = bcd2dec (p[1] & 0x1F); datetime->minute = bcd2dec (p[0]); break; default: datetime->year = bcd2dec (((p[3] & 0xC0) >> 2) + (p[4] & 0x0F)) + 2000; datetime->month = (p[4] & 0xF0) >> 4; if (parser->model == T3) datetime->day = p[3] & 0x3F; else datetime->day = bcd2dec (p[3] & 0x3F); datetime->hour = bcd2dec (p[1] & 0x1F); datetime->minute = bcd2dec (p[0]); break; } datetime->second = 0; // Convert to a 24-hour clock. datetime->hour %= 12; if (p[1] & 0x80) datetime->hour += 12; /* * Workaround for the year 2010 problem. * * In theory there are more than enough bits available to store years * past 2010. Unfortunately some models do not use all those bits and * store only the last digit of the year. We try to guess the missing * information based on the current year. This should work in most * cases, except when the dive is more than 10 years old or in the * future (due to an incorrect clock on the device or the host system). * * Note that we are careful not to apply any guessing when the year is * actually stored with more bits. We don't want the code to break when * a firmware update fixes this bug. */ if (datetime->year < 2010) { // Retrieve the current year. dc_datetime_t now = {0}; if (dc_datetime_localtime (&now, dc_datetime_now ()) && now.year >= 2010) { // Guess the correct decade. int decade = (now.year / 10) * 10; if (datetime->year % 10 > now.year % 10) decade -= 10; /* Force back to the previous decade. */ // Adjust the year. datetime->year += decade - 2000; } } } return PARSER_STATUS_SUCCESS; } static parser_status_t oceanic_atom2_parser_get_field (parser_t *abstract, parser_field_type_t type, unsigned int flags, void *value) { oceanic_atom2_parser_t *parser = (oceanic_atom2_parser_t *) abstract; const unsigned char *data = abstract->data; unsigned int size = abstract->size; unsigned int length = 11 * PAGESIZE / 2; unsigned int header = 4 * PAGESIZE; unsigned int footer = size - PAGESIZE; if (parser->model == DATAMASK || parser->model == COMPUMASK || parser->model == GEO || parser->model == GEO20 || parser->model == VEO20 || parser->model == VEO30) { length -= PAGESIZE; header -= PAGESIZE; } if (size < length) return PARSER_STATUS_ERROR; if (!parser->cached) { sample_statistics_t statistics = SAMPLE_STATISTICS_INITIALIZER; parser_status_t rc = oceanic_atom2_parser_samples_foreach ( abstract, sample_statistics_cb, &statistics); if (rc != PARSER_STATUS_SUCCESS) return rc; parser->cached = 1; parser->divetime = statistics.divetime; parser->maxdepth = statistics.maxdepth; } gasmix_t *gasmix = (gasmix_t *) value; unsigned int nitrox = 0; if (value) { switch (type) { case FIELD_TYPE_DIVETIME: *((unsigned int *) value) = parser->divetime; break; case FIELD_TYPE_MAXDEPTH: *((double *) value) = array_uint16_le (data + footer + 4) / 16.0 * FEET; break; case FIELD_TYPE_GASMIX_COUNT: if (parser->model == DATAMASK || parser->model == COMPUMASK) *((unsigned int *) value) = 1; else *((unsigned int *) value) = 3; break; case FIELD_TYPE_GASMIX: if (parser->model == DATAMASK || parser->model == COMPUMASK) nitrox = data[header + 3]; else nitrox = data[header + 4 + flags]; gasmix->helium = 0.0; gasmix->oxygen = (nitrox ? nitrox / 100.0 : 0.21); gasmix->nitrogen = 1.0 - gasmix->oxygen - gasmix->helium; break; default: return PARSER_STATUS_UNSUPPORTED; } } return PARSER_STATUS_SUCCESS; } static parser_status_t oceanic_atom2_parser_samples_foreach (parser_t *abstract, sample_callback_t callback, void *userdata) { oceanic_atom2_parser_t *parser = (oceanic_atom2_parser_t *) abstract; if (! parser_is_oceanic_atom2 (abstract)) return PARSER_STATUS_TYPE_MISMATCH; const unsigned char *data = abstract->data; unsigned int size = abstract->size; unsigned int header = 4 * PAGESIZE; if (parser->model == DATAMASK || parser->model == COMPUMASK || parser->model == GEO || parser->model == GEO20 || parser->model == VEO20 || parser->model == VEO30) header -= PAGESIZE; else if (parser->model == VT4 || parser->model == VT41) header += PAGESIZE; else if (parser->model == ATOM1) header -= 2 * PAGESIZE; if (size < header + 3 * PAGESIZE / 2) return PARSER_STATUS_ERROR; unsigned int time = 0; unsigned interval = 0; switch (data[0x17] & 0x03) { case 0: interval = 2; break; case 1: interval = 15; break; case 2: interval = 30; break; case 3: interval = 60; break; } unsigned int samplesize = PAGESIZE / 2; if (parser->model == OC1A || parser->model == OC1B) samplesize = PAGESIZE; int complete = 1; unsigned int tank = 0; unsigned int pressure = data[header + 2] + (data[header + 3] << 8); unsigned int temperature = data[header + 7]; unsigned int airintegrated = 1; if (parser->model == VEO30) airintegrated = 0; if (pressure == 10000) airintegrated = 0; unsigned int offset = header + PAGESIZE / 2; while (offset + samplesize <= size - PAGESIZE) { parser_sample_value_t sample = {0}; // Ignore empty samples. if (array_isequal (data + offset, samplesize, 0x00) || array_isequal (data + offset, samplesize, 0xFF)) { offset += samplesize; continue; } // Time. if (complete) { time += interval; sample.time = time; if (callback) callback (SAMPLE_TYPE_TIME, sample, userdata); complete = 0; } // The sample size is usually fixed, but some sample types have a // larger size. Check whether we have that many bytes available. unsigned int length = samplesize; if (data[offset + 0] == 0xBB) { length = PAGESIZE; if (offset + length > size - PAGESIZE) return PARSER_STATUS_ERROR; } // Vendor specific data sample.vendor.type = SAMPLE_VENDOR_OCEANIC_ATOM2; sample.vendor.size = length; sample.vendor.data = data + offset; if (callback) callback (SAMPLE_TYPE_VENDOR, sample, userdata); // Check for a tank switch sample. if (data[offset + 0] == 0xAA) { if (parser->model == DATAMASK || parser->model == COMPUMASK) { // Tank pressure (1 psi) and number tank = 0; pressure = (((data[offset + 7] << 8) + data[offset + 6]) & 0x0FFF); } else { // Tank pressure (2 psi) and number (one based index) tank = (data[offset + 1] & 0x03) - 1; if (parser->model == ATOM2 || parser->model == EPIC) pressure = (((data[offset + 3] << 8) + data[offset + 4]) & 0x0FFF) * 2; else pressure = (((data[offset + 4] << 8) + data[offset + 5]) & 0x0FFF) * 2; } } else if (data[offset + 0] == 0xBB) { // The surface time is not always a nice multiple of the samplerate. // The number of inserted surface samples is therefore rounded down // to keep the timestamps aligned at multiples of the samplerate. unsigned int surftime = 60 * bcd2dec (data[offset + 1]) + bcd2dec (data[offset + 2]); unsigned int nsamples = surftime / interval; for (unsigned int i = 0; i < nsamples; ++i) { if (complete) { time += interval; sample.time = time; if (callback) callback (SAMPLE_TYPE_TIME, sample, userdata); } sample.depth = 0.0; if (callback) callback (SAMPLE_TYPE_DEPTH, sample, userdata); complete = 1; } } else { // Temperature (°F) if (parser->model == GEO || parser->model == ATOM1) { temperature = data[offset + 6]; } else if (parser->model == GEO20 || parser->model == VEO20 || parser->model == VEO30 || parser->model == OC1A || parser->model == OC1B) { temperature = data[offset + 3]; } else if (parser->model == VT4 || parser->model == VT41 || parser->model == ATOM3 || parser->model == ATOM31) { temperature = ((data[offset + 7] & 0xF0) >> 4) | ((data[offset + 7] & 0x0C) << 2) | ((data[offset + 5] & 0x0C) << 4); } else { unsigned int sign; if (parser->model == ATOM2 || parser->model == EPIC || parser->model == PROPLUS21) sign = (data[offset + 0] & 0x80) >> 7; else sign = (~data[offset + 0] & 0x80) >> 7; if (sign) temperature -= (data[offset + 7] & 0x0C) >> 2; else temperature += (data[offset + 7] & 0x0C) >> 2; } sample.temperature = (temperature - 32.0) * (5.0 / 9.0); if (callback) callback (SAMPLE_TYPE_TEMPERATURE, sample, userdata); // Tank Pressure (psi) if (parser->model == OC1A || parser->model == OC1B) pressure = (data[offset + 10] + (data[offset + 11] << 8)) & 0x0FFF; else if (parser->model == ZENAIR || parser->model == VT4 || parser->model == VT41|| parser->model == ATOM3 || parser->model == ATOM31) pressure = (((data[offset + 0] & 0x03) << 8) + data[offset + 1]) * 5; else pressure -= data[offset + 1]; sample.pressure.tank = tank; sample.pressure.value = pressure * PSI / BAR; if (callback && airintegrated) callback (SAMPLE_TYPE_PRESSURE, sample, userdata); // Depth (1/16 ft) unsigned int depth; if (parser->model == GEO20 || parser->model == VEO20 || parser->model == VEO30 || parser->model == OC1A || parser->model == OC1B) depth = (data[offset + 4] + (data[offset + 5] << 8)) & 0x0FFF; else if (parser->model == ATOM1) depth = data[offset + 3] * 16; else depth = (data[offset + 2] + (data[offset + 3] << 8)) & 0x0FFF; sample.depth = depth / 16.0 * FEET; if (callback) callback (SAMPLE_TYPE_DEPTH, sample, userdata); complete = 1; } offset += length; } return PARSER_STATUS_SUCCESS; }