/* * libdivecomputer * * Copyright (C) 2013 Jef Driesen * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, * MA 02110-1301 USA */ #include // memcpy, memcmp #include // malloc, free #include // assert #include "cressi_leonardo.h" #include "context-private.h" #include "device-private.h" #include "serial.h" #include "checksum.h" #include "array.h" #include "ringbuffer.h" #define ISINSTANCE(device) dc_device_isinstance((device), &cressi_leonardo_device_vtable) #define SZ_MEMORY 32000 #define RB_LOGBOOK_BEGIN 0x0100 #define RB_LOGBOOK_END 0x1438 #define RB_LOGBOOK_SIZE 0x52 #define RB_LOGBOOK_COUNT ((RB_LOGBOOK_END - RB_LOGBOOK_BEGIN) / RB_LOGBOOK_SIZE) #define RB_PROFILE_BEGIN 0x1438 #define RB_PROFILE_END SZ_MEMORY #define RB_PROFILE_DISTANCE(a,b) ringbuffer_distance (a, b, 0, RB_PROFILE_BEGIN, RB_PROFILE_END) #define MAXRETRIES 4 #define PACKETSIZE 32 typedef struct cressi_leonardo_device_t { dc_device_t base; dc_iostream_t *iostream; unsigned char fingerprint[5]; } cressi_leonardo_device_t; static dc_status_t cressi_leonardo_device_set_fingerprint (dc_device_t *abstract, const unsigned char data[], unsigned int size); static dc_status_t cressi_leonardo_device_read (dc_device_t *abstract, unsigned int address, unsigned char data[], unsigned int size); static dc_status_t cressi_leonardo_device_dump (dc_device_t *abstract, dc_buffer_t *buffer); static dc_status_t cressi_leonardo_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata); static dc_status_t cressi_leonardo_device_close (dc_device_t *abstract); static const dc_device_vtable_t cressi_leonardo_device_vtable = { sizeof(cressi_leonardo_device_t), DC_FAMILY_CRESSI_LEONARDO, cressi_leonardo_device_set_fingerprint, /* set_fingerprint */ cressi_leonardo_device_read, /* read */ NULL, /* write */ cressi_leonardo_device_dump, /* dump */ cressi_leonardo_device_foreach, /* foreach */ NULL, /* timesync */ cressi_leonardo_device_close /* close */ }; static dc_status_t cressi_leonardo_extract_dives (dc_device_t *abstract, const unsigned char data[], unsigned int size, dc_dive_callback_t callback, void *userdata); static void cressi_leonardo_make_ascii (const unsigned char raw[], unsigned int rsize, unsigned char ascii[], unsigned int asize) { assert (asize == 2 * (rsize + 3)); // Header ascii[0] = '{'; // Data array_convert_bin2hex (raw, rsize, ascii + 1, 2 * rsize); // Checksum unsigned short crc = checksum_crc_ccitt_uint16 (ascii + 1, 2 * rsize); unsigned char checksum[] = { (crc >> 8) & 0xFF, // High (crc ) & 0xFF}; // Low array_convert_bin2hex (checksum, sizeof(checksum), ascii + 1 + 2 * rsize, 4); // Trailer ascii[asize - 1] = '}'; } static dc_status_t cressi_leonardo_packet (cressi_leonardo_device_t *device, const unsigned char command[], unsigned int csize, unsigned char answer[], unsigned int asize) { dc_status_t status = DC_STATUS_SUCCESS; dc_device_t *abstract = (dc_device_t *) device; if (device_is_cancelled (abstract)) return DC_STATUS_CANCELLED; // Send the command to the device. status = dc_iostream_write (device->iostream, command, csize, NULL); if (status != DC_STATUS_SUCCESS) { ERROR (abstract->context, "Failed to send the command."); return status; } // Receive the answer of the device. status = dc_iostream_read (device->iostream, answer, asize, NULL); if (status != DC_STATUS_SUCCESS) { ERROR (abstract->context, "Failed to receive the answer."); return status; } // Verify the header and trailer of the packet. if (answer[0] != '{' || answer[asize - 1] != '}') { ERROR (abstract->context, "Unexpected answer header/trailer byte."); return DC_STATUS_PROTOCOL; } // Convert the checksum of the packet. unsigned char checksum[2] = {0}; array_convert_hex2bin (answer + asize - 5, 4, checksum, sizeof(checksum)); // Verify the checksum of the packet. unsigned short crc = array_uint16_be (checksum); unsigned short ccrc = checksum_crc_ccitt_uint16 (answer + 1, asize - 6); if (crc != ccrc) { ERROR (abstract->context, "Unexpected answer checksum."); return DC_STATUS_PROTOCOL; } return DC_STATUS_SUCCESS; } static dc_status_t cressi_leonardo_transfer (cressi_leonardo_device_t *device, const unsigned char command[], unsigned int csize, unsigned char answer[], unsigned int asize) { unsigned int nretries = 0; dc_status_t rc = DC_STATUS_SUCCESS; while ((rc = cressi_leonardo_packet (device, command, csize, answer, asize)) != DC_STATUS_SUCCESS) { // Automatically discard a corrupted packet, // and request a new one. if (rc != DC_STATUS_PROTOCOL && rc != DC_STATUS_TIMEOUT) return rc; // Abort if the maximum number of retries is reached. if (nretries++ >= MAXRETRIES) return rc; // Discard any garbage bytes. dc_iostream_sleep (device->iostream, 100); dc_iostream_purge (device->iostream, DC_DIRECTION_INPUT); } return rc; } dc_status_t cressi_leonardo_device_open (dc_device_t **out, dc_context_t *context, const char *name) { dc_status_t status = DC_STATUS_SUCCESS; cressi_leonardo_device_t *device = NULL; if (out == NULL) return DC_STATUS_INVALIDARGS; // Allocate memory. device = (cressi_leonardo_device_t *) dc_device_allocate (context, &cressi_leonardo_device_vtable); if (device == NULL) { ERROR (context, "Failed to allocate memory."); return DC_STATUS_NOMEMORY; } // Set the default values. device->iostream = NULL; memset (device->fingerprint, 0, sizeof (device->fingerprint)); // Open the device. status = dc_serial_open (&device->iostream, context, name); if (status != DC_STATUS_SUCCESS) { ERROR (context, "Failed to open the serial port."); goto error_free; } // Set the serial communication protocol (115200 8N1). status = dc_iostream_configure (device->iostream, 115200, 8, DC_PARITY_NONE, DC_STOPBITS_ONE, DC_FLOWCONTROL_NONE); if (status != DC_STATUS_SUCCESS) { ERROR (context, "Failed to set the terminal attributes."); goto error_close; } // Set the timeout for receiving data (1000 ms). status = dc_iostream_set_timeout (device->iostream, 1000); if (status != DC_STATUS_SUCCESS) { ERROR (context, "Failed to set the timeout."); goto error_close; } // Set the RTS line. status = dc_iostream_set_rts (device->iostream, 1); if (status != DC_STATUS_SUCCESS) { ERROR (context, "Failed to set the RTS line."); goto error_close; } // Set the DTR line. status = dc_iostream_set_dtr (device->iostream, 1); if (status != DC_STATUS_SUCCESS) { ERROR (context, "Failed to set the DTR line."); goto error_close; } dc_iostream_sleep (device->iostream, 200); // Clear the DTR line. status = dc_iostream_set_dtr (device->iostream, 0); if (status != DC_STATUS_SUCCESS) { ERROR (context, "Failed to clear the DTR line."); goto error_close; } dc_iostream_sleep (device->iostream, 100); dc_iostream_purge (device->iostream, DC_DIRECTION_ALL); *out = (dc_device_t *) device; return DC_STATUS_SUCCESS; error_close: dc_iostream_close (device->iostream); error_free: dc_device_deallocate ((dc_device_t *) device); return status; } static dc_status_t cressi_leonardo_device_close (dc_device_t *abstract) { dc_status_t status = DC_STATUS_SUCCESS; cressi_leonardo_device_t *device = (cressi_leonardo_device_t *) abstract; dc_status_t rc = DC_STATUS_SUCCESS; // Close the device. rc = dc_iostream_close (device->iostream); if (rc != DC_STATUS_SUCCESS) { dc_status_set_error(&status, rc); } return status; } static dc_status_t cressi_leonardo_device_set_fingerprint (dc_device_t *abstract, const unsigned char data[], unsigned int size) { cressi_leonardo_device_t *device = (cressi_leonardo_device_t *) abstract; if (size && size != sizeof (device->fingerprint)) return DC_STATUS_INVALIDARGS; if (size) memcpy (device->fingerprint, data, sizeof (device->fingerprint)); else memset (device->fingerprint, 0, sizeof (device->fingerprint)); return DC_STATUS_SUCCESS; } static dc_status_t cressi_leonardo_device_read (dc_device_t *abstract, unsigned int address, unsigned char data[], unsigned int size) { dc_status_t rc = DC_STATUS_SUCCESS; cressi_leonardo_device_t *device = (cressi_leonardo_device_t *) abstract; unsigned int nbytes = 0; while (nbytes < size) { // Calculate the packet size. unsigned int len = size - nbytes; if (len > PACKETSIZE) len = PACKETSIZE; // Build the raw command. unsigned char raw[] = { (address >> 8) & 0xFF, // High (address ) & 0xFF, // Low (len >> 8) & 0xFF, // High (len ) & 0xFF}; // Low // Build the ascii command. unsigned char command[2 * (sizeof (raw) + 3)] = {0}; cressi_leonardo_make_ascii (raw, sizeof (raw), command, sizeof (command)); // Send the command and receive the answer. unsigned char answer[2 * (PACKETSIZE + 3)] = {0}; rc = cressi_leonardo_transfer (device, command, sizeof (command), answer, 2 * (len + 3)); if (rc != DC_STATUS_SUCCESS) return rc; // Extract the raw data from the packet. array_convert_hex2bin (answer + 1, 2 * len, data, len); nbytes += len; address += len; data += len; } return rc; } static dc_status_t cressi_leonardo_device_dump (dc_device_t *abstract, dc_buffer_t *buffer) { dc_status_t status = DC_STATUS_SUCCESS; cressi_leonardo_device_t *device = (cressi_leonardo_device_t *) abstract; // Erase the current contents of the buffer and // pre-allocate the required amount of memory. if (!dc_buffer_clear (buffer) || !dc_buffer_resize (buffer, SZ_MEMORY)) { ERROR (abstract->context, "Insufficient buffer space available."); return DC_STATUS_NOMEMORY; } // Enable progress notifications. dc_event_progress_t progress = EVENT_PROGRESS_INITIALIZER; progress.maximum = SZ_MEMORY; device_event_emit (abstract, DC_EVENT_PROGRESS, &progress); // Send the command header to the dive computer. const unsigned char command[] = {0x7B, 0x31, 0x32, 0x33, 0x44, 0x42, 0x41, 0x7d}; status = dc_iostream_write (device->iostream, command, sizeof (command), NULL); if (status != DC_STATUS_SUCCESS) { ERROR (abstract->context, "Failed to send the command."); return status; } // Receive the header packet. unsigned char header[7] = {0}; status = dc_iostream_read (device->iostream, header, sizeof (header), NULL); if (status != DC_STATUS_SUCCESS) { ERROR (abstract->context, "Failed to receive the answer."); return status; } // Verify the header packet. const unsigned char expected[] = {0x7B, 0x21, 0x44, 0x35, 0x42, 0x33, 0x7d}; if (memcmp (header, expected, sizeof (expected)) != 0) { ERROR (abstract->context, "Unexpected answer byte."); return DC_STATUS_PROTOCOL; } unsigned char *data = dc_buffer_get_data (buffer); unsigned int nbytes = 0; while (nbytes < SZ_MEMORY) { // Set the minimum packet size. unsigned int len = 1024; // Increase the packet size if more data is immediately available. size_t available = 0; status = dc_iostream_get_available (device->iostream, &available); if (status == DC_STATUS_SUCCESS && available > len) len = available; // Limit the packet size to the total size. if (nbytes + len > SZ_MEMORY) len = SZ_MEMORY - nbytes; // Read the packet. status = dc_iostream_read (device->iostream, data + nbytes, len, NULL); if (status != DC_STATUS_SUCCESS) { ERROR (abstract->context, "Failed to receive the answer."); return status; } // Update and emit a progress event. progress.current += len; device_event_emit (abstract, DC_EVENT_PROGRESS, &progress); nbytes += len; } // Receive the trailer packet. unsigned char trailer[4] = {0}; status = dc_iostream_read (device->iostream, trailer, sizeof (trailer), NULL); if (status != DC_STATUS_SUCCESS) { ERROR (abstract->context, "Failed to receive the answer."); return status; } // Convert to a binary checksum. unsigned char checksum[2] = {0}; array_convert_hex2bin (trailer, sizeof (trailer), checksum, sizeof (checksum)); // Verify the checksum. unsigned int csum1 = array_uint16_be (checksum); unsigned int csum2 = checksum_crc_ccitt_uint16 (data, SZ_MEMORY); if (csum1 != csum2) { ERROR (abstract->context, "Unexpected answer bytes."); return DC_STATUS_PROTOCOL; } return DC_STATUS_SUCCESS; } static dc_status_t cressi_leonardo_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata) { dc_buffer_t *buffer = dc_buffer_new (SZ_MEMORY); if (buffer == NULL) return DC_STATUS_NOMEMORY; dc_status_t rc = cressi_leonardo_device_dump (abstract, buffer); if (rc != DC_STATUS_SUCCESS) { dc_buffer_free (buffer); return rc; } unsigned char *data = dc_buffer_get_data (buffer); dc_event_devinfo_t devinfo; devinfo.model = data[0]; devinfo.firmware = 0; devinfo.serial = array_uint24_le (data + 1); device_event_emit (abstract, DC_EVENT_DEVINFO, &devinfo); rc = cressi_leonardo_extract_dives (abstract, dc_buffer_get_data (buffer), dc_buffer_get_size (buffer), callback, userdata); dc_buffer_free (buffer); return rc; } static dc_status_t cressi_leonardo_extract_dives (dc_device_t *abstract, const unsigned char data[], unsigned int size, dc_dive_callback_t callback, void *userdata) { cressi_leonardo_device_t *device = (cressi_leonardo_device_t *) abstract; dc_context_t *context = (abstract ? abstract->context : NULL); if (abstract && !ISINSTANCE (abstract)) return DC_STATUS_INVALIDARGS; if (size < SZ_MEMORY) return DC_STATUS_DATAFORMAT; // Get the number of dives. //unsigned int ndives = array_uint16_le(data + 0x62); // Get the logbook pointer. unsigned int last = array_uint16_le(data + 0x64); if (last < RB_LOGBOOK_BEGIN || last > RB_LOGBOOK_END || ((last - RB_LOGBOOK_BEGIN) % RB_LOGBOOK_SIZE) != 0) { ERROR (context, "Invalid logbook pointer (0x%04x).", last); return DC_STATUS_DATAFORMAT; } // Convert to an index. unsigned int latest = (last - RB_LOGBOOK_BEGIN) / RB_LOGBOOK_SIZE; // Get the profile pointer. unsigned int eop = array_uint16_le(data + 0x66); if (eop < RB_PROFILE_BEGIN || last > RB_PROFILE_END) { ERROR (context, "Invalid profile pointer (0x%04x).", eop); return DC_STATUS_DATAFORMAT; } unsigned char *buffer = (unsigned char *) malloc (RB_LOGBOOK_SIZE + RB_PROFILE_END - RB_PROFILE_BEGIN); if (buffer == NULL) { ERROR (context, "Failed to allocate memory."); return DC_STATUS_NOMEMORY; } unsigned int previous = eop; unsigned int remaining = RB_PROFILE_END - RB_PROFILE_BEGIN; for (unsigned int i = 0; i < RB_LOGBOOK_COUNT; ++i) { unsigned int idx = (latest + RB_LOGBOOK_COUNT - i) % RB_LOGBOOK_COUNT; unsigned int offset = RB_LOGBOOK_BEGIN + idx * RB_LOGBOOK_SIZE; // Ignore uninitialized header entries. if (array_isequal (data + offset, RB_LOGBOOK_SIZE, 0xFF)) break; // Get the ringbuffer pointers. unsigned int header = array_uint16_le (data + offset + 2); unsigned int footer = array_uint16_le (data + offset + 4); if (header < RB_PROFILE_BEGIN || header + 2 > RB_PROFILE_END || footer < RB_PROFILE_BEGIN || footer + 2 > RB_PROFILE_END) { ERROR (context, "Invalid ringbuffer pointer detected (0x%04x 0x%04x).", header, footer); free (buffer); return DC_STATUS_DATAFORMAT; } if (previous && previous != footer + 2) { ERROR (context, "Profiles are not continuous (0x%04x 0x%04x 0x%04x).", header, footer, previous); free (buffer); return DC_STATUS_DATAFORMAT; } // Check the fingerprint data. if (device && memcmp (data + offset + 8, device->fingerprint, sizeof (device->fingerprint)) == 0) break; // Copy the logbook entry. memcpy (buffer, data + offset, RB_LOGBOOK_SIZE); // Calculate the profile address and length. unsigned int address = header + 2; unsigned int length = RB_PROFILE_DISTANCE (header, footer) - 2; if (remaining && remaining >= length + 4) { // Get the same pointers from the profile. unsigned int header2 = array_uint16_le (data + footer); unsigned int footer2 = array_uint16_le (data + header); if (header2 != header || footer2 != footer) { ERROR (context, "Invalid ringbuffer pointer detected (0x%04x 0x%04x).", header2, footer2); free (buffer); return DC_STATUS_DATAFORMAT; } // Copy the profile data. if (address + length > RB_PROFILE_END) { unsigned int len_a = RB_PROFILE_END - address; unsigned int len_b = length - len_a; memcpy (buffer + RB_LOGBOOK_SIZE, data + address, len_a); memcpy (buffer + RB_LOGBOOK_SIZE + len_a, data + RB_PROFILE_BEGIN, len_b); } else { memcpy (buffer + RB_LOGBOOK_SIZE, data + address, length); } remaining -= length + 4; } else { // No more profile data available! remaining = 0; length = 0; } if (callback && !callback (buffer, RB_LOGBOOK_SIZE + length, buffer + 8, sizeof (device->fingerprint), userdata)) { break; } previous = header; } free (buffer); return DC_STATUS_SUCCESS; }