I verified that the unsigned integer in the devinfo header actually matches the
serial number shown in the "About" dialog on the device - so let's add this as
extra data string and make it user visible (and also allow Mares Icon HD style
devices to be reliably distinguished in Subsurface).
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
I verified that the unsigned integer in the devinfo header actually matches the
serial number printed on the device - so let's add this as extra data string
and make it user visible (and also allow Suunto Vyper style devices to be
reliably distinguished in Subsurface).
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
Merge upstream updates from Jef:
- add suppoort for various new variants of existing dive computers:
+ Suunto Eon Steel Black, and new variant of Zoop Novo
+ Sherwood Beacon
+ new Shearwater Perdix AI model number
- add new Sporasub SP2 support
- various minor fixes and updates
* 'master' of git://github.com/libdivecomputer/libdivecomputer: (22 commits)
Add support for a new Suunto Zoop Novo variant
Add support for the EON Steel Black
Add support for the Sporasub SP2
Fix an overflow in the progress events
Use a common sleep implementation
Fix the clang compiler flag detection
Add Github Actions CI builds and releases
Show a summary after configuration
Extend the OS detection to non Windows platforms
Implement the ndl/deco sample
Fix the maximum depth
Mark the McLean Extreme as supporting BLE
Fix -Wcast-qual compiler warning
Mark the new iX3M 2021 models as supporting BLE
Add support for the Sherwood Beacon
Remove the infinite timeout
Simplify the loop for reading the packet header
Add a new Perdix AI hardware type
Fix the McLean Extreme fingerprint feature
Perform the check for the NULL key earlier
...
The Sporasub SP2 uses a very simple communication protocol and memory
layout, but with some unusual aspects:
Dives are artifically limited to a maximum of 6000 samples.
Unlike all other dive computers, the dives are not stored in some kind
of ringbuffer structure. Once the memory is full, no new dives can be
recorded. The existing dives need to be erased first, and the dive
computer will start recording again at te start of the memory area. The
Sporasub application has an "Auto-clear watch memory after data
transfer" feature for this purpose.
I didn't implement a more efficient download algorithm because
downloading a full memory dumps takes less than 10 seconds.
Merge upstream changes by Jef Driesen:
- add support for Liquivision dive computers
- add support for the Aqualung i470TC
- extract out Atomic Aquatics Cobalt USB support as a iostream
- misc fixes
* git://github.com/libdivecomputer/libdivecomputer:
Fix the OSTC4 firmware upgrade
Handle a negative number of bytes as an error
Update the example application
Use the new USB transport for the Atomic Aquatics Cobalt
Add an I/O implementation for USB communication
Add support for filter parameters
Disable direct access to the filter function
Increase the receive timeout to 5 seconds
Fix the McLean Extreme bluetooth name
Add support for Liquivision dive computers
Add support for the Aqualung i470TC
Add initial support for the Oceans S1.
This expands a bit on the generic functions for the field-cache code,
and uses that to then add a fairly minimal Oceans S1 downloader.
And while it's minimal, it downloads about everything the S1 offers,
which is mainly just depth and temperature.
There are a few fields that it currently doesn't use, notably the
events and NDL information that the dive computer presumably reports in
the auxiliary data that comes in the sample, but without documentation
and more testing I'm not comfortable parsing that.
There's also some "current dive computer state" that isn't imported,
like the battery status. I know how to read it, but it's not per-dive
data that could be added as extra fields: it's literally just the
current dive computer battery state at the time of the download.
The Oceans team said they'll provide more information about the
download, so this might be expanded in the future, but it seems fairly
usable even in this form.
Thanks to Dhaval Giani for sending me his Oceans S1 as a loaner, and to
Seth Garrison for doing the initial BLE packet dumps that made me think
it was fairly easily doable.
* Oceans-S1:
Oceans S1: polish up the downloading logic for usability
Oceans S1: actually download all dives and parse them
Oceans S1: fill out core download protocol details
Oceans S1: start filling in protocol details
Oceans S1: start documenting the download format and first packets
Add skeleton for Oceans S1 downloader
Add generic dc_field_get() helper
Merge upstream libdivecomputer updates from Jef Driesen:
- Jef merged the EON Steel dive sorting fix we had in our branch: one
less difference to upstream
- Jef merged the McLean Extreme support with some updates and cleanups,
this just takes all his changes.
- manual pages for iostream
- various minor fixes and updates from Jef
* git://github.com/libdivecomputer/libdivecomputer:
Update the gitignore file
Update the man pages for the new iostream functions
Purge the serial port buffer during initialization
Add support for the McLean Extreme
Suunto Eon Steel: sort the dive list properly
Remove the salinity compensation
Fix the hwOS ppO2 bug for firmware v3.08
Initial support for McLean Extreme
Signed-off by: David McLean Carron <david_de_carron@hotmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
These backends want the serial number for reporting, and can't get it
any other way.
We really should re-organize this. It's a nasty source of pointless
changes wrt upstream libdivecomputer, and I'm not convinced it's worth
the pain.
We also don't even have a consistent ordering for the arguments. Oh well.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This uses pretty much all of our new infrastructure: the USB storage
iostream for the actual IO, the field-cache for the divecomputer fields,
and the string interface for the events.
It's also a very fast downloader.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In commit 2829f7ebf9902170bf653d67dbe412a0a4f140cf, the hwos parameter
of the hw_ostc_parser_create() function was kept to preserve backwards
compatibility. Since the function has been removed from the public api,
the parameter can be removed now.
The Uwatec Smart, Meridian and G2 backends are almost identical, except
for the low-level packet sending and receiving code. With the new I/O
layer, those three backends can easily be unified in a single backend.
The Meridian and G2 are completely removed, only the family types are
kept for backwards compatibility.
The back-end parser seems to be the same as for the Uwatec Smart (aka
Galileo Sol). At least that's the assumption right now.
The downloader just uses USB HID (very similar to EON Steel) rather than
the horrible IrDA thing.
There's also eventually a BLE thing, but that's for the future.
This is an unholy mixture of the Uwatec Smart downloader logic and the
EON Steel usbhid transfer code. The back-end is pure Uwatec Smart
(model 0x11, same as Galileo Sol).
I'm not at all sure this gets everything right, but it downloads
*something*.
[Jef Driesen: Renamed the backend to uwatec, and made some smaller
cosmetic changes to match the existing coding style.]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The calibration values for the Petrel are typically in the range 1600 to
2400, while for Predator they are much smaller, with values in the range
800 to 1400. The consequence is that the calculated ppO2 values are too
low for the Predator. Adding a constant offset of about 1000 changes the
calibration value to be in approximately the same range as the Petrel,
and hence more reasonable ppO2 values. But this correction should only
be applied for the Predator, and not the Petrel.
Reviewed-by: Anton Lundin <glance@acc.umu.se>
The second variant of the open or create functions were introduced to
maintain backwards compatibility. But after being removed from the
public api, these functions serve no purpose anymore, and can be removed
completely.
The vendor_product_parser_create() and vendor_product_device_open()
functions should be called indirectly, through the generic
dc_device_open() and dc_parser_new() functions. And the
vendor_product_extract_dives() functions are internal functions that
should never have been part of the public api in the first place.
The Cressi Drake is a mainly a freedive computer. The data format is
almost identical to the Leonardo. The main difference is that a single
dive now contains an entire freedive session. Each freedive in the
session is delimited with a 4 byte header containing the surface
interval and a special marker.
To be able to pass the OSTC 3 model number to the parser, and preserve
backwards compatibility, we need a new function. The new function should
also be used for the Frog, by passing zero as the model number.
Using the hw_ostc_parser_create() function with the hwos parameter set
to one, is now deprecated but will remain supported for backwards
compatibility.
For applications supporting offline parsing (like libdivecomputer's own
dctool application), some device specific knowledge is still required in
order to map a particular model to the corresponding backend. The new
convenience function will take care of that internally.
The already existing dc_parser_new() function does the same, but
requires an open device handle, which makes it unsuitable for offline
parsing.
Both the allocation and initialization of the object data structure is
now moved to a single function. The corresponding deallocation function
is intended to free objects that have been allocated, but are not fully
initialized yet. The public cleanup function shouldn't be used in such
case, because it may try to release resources that haven't been
initialized yet.
Instead of freeing the object data structure in the backend specific
cleanup function, the memory is now freed automatically in the base
class function. This reduces the amount of boilerplate code in the
backends. Backends that don't allocate any additional resources, do no
longer require a cleanup function at all.
The protocol of the iX3M series is almost identical to the protocol of
the iDive series. The main difference is that the command bytes and the
size of the response packets have been changed. In order to be able to
communicate with the correct set of commands, the user needs to supply
the correct number now. To maintain backwards compatibility, a new
variant of the open function is added.
Basic Suunto EON Steel downloading copied from my test application.
This parses all the core dive data, including sample data (time, depth,
cylinder pressure, deco information etc).
The deco information returns ceiling and TTS rather than ceiling and
"time at ceiling", because that's what the dive computer has, and I
don't see any other way to return the information.
We don't report any events yet, though.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The Uwatec Meridian protocol is identical to the Uwatec Smart/Galileo
protocol, except for some additional framing around each data packet,
and the switch from IrDA to usb-serial communication. For parsing, the
data format appears to be identical to the Galileo data format.
Although the communication protocol of the OSTC3 is nearly identical to
that of the Frog, the different size parameters make it hard to share
the code easily. On top of that, if we ever implement native bluetooth
communication support, we'll need a completely separate backend anyway.
Therefore the Frog backend is simply duplicated, with a few OSTC3
specific changes applied here and there.
The existing ostc parser is upgraded to support the new OSTC3 data
format.
The React Pro White appears to be a newer variant of the React Pro. For
the communication it uses the newer atom2 protocol, but the data format
remains (almost) the same as the older React Pro.
The Petrel (with updated firmware) supports an enhanced communication
protocol, which is more efficient and powerfull than the legacy Predator
compatibility mode. The new protocol uses data compression for faster
transfers and supports the ability to selectively download individual
dives. Last but not least, the new protocol isn't limited to the last
128kB of logbook data, but can access the full logbook capacity (16MB).
Currently, each backend has it's own function to verify whether the
object vtable pointer is the expected one. All these functions can be
removed in favor of a single isintance function in the base class,
which takes the expected vtable pointer as a parameter.
Functions which are called through the vtable, don't need to verify the
vtable pointer, and those checks are removed.
The term "backend" can be confusing because it can refer to both the
virtual function table and the device/parser backends. The use of the
term "vtable" avoids this.
This is only a preliminary version. There is certainly some room for
improvement, but the basic functionality is already in place. That
should be sufficient for daily use, and possibles issues can always be
fixed when discovered.
I forgot to update the device and parser initialization functions to
store the context pointer into the objects. As a result, the internal
context pointers were always NULL.
The public api is changed to require a context object for all
operations. Because other library objects store the context pointer
internally, only the constructor functions need an explicit context
object as a parameter.
The devinfo and clock event data is now cached internally at the device layer.
This allows the new dc_parser_new() convenience function to retrieve the event
data directly from the device handle, and applications don't have to deal with
the events anymore to create a parser.
Adding the "dc_" namespace prefix (which is of course an abbreviation
for libdivecomputer) should avoid conflicts with other libraries. For
the time being, only the high-level device and parser layers are
changed.